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ABSTRACT 
In search for a more sustainable agriculture, the use of microorganisms as a technology is increasingly 
being used by agriculture throughout the world. This is due to the fact that it minimizes the use of 
agricultural supplies reducing environmental costs and impacts, based on the beneficial and natural 
relationships between edaphic organisms and cultivated plants. The rhizobacteria habitat in the soil 
establishes biochemical relationships with the plants acting as plant growth promoters (PGPR). Many 
of these bacteria are producers of phytohormones and enzymatic compounds with the capacity to 
provide important nutrients for plants. In this context, the present work aimed to quantify the 
potential of indole-3-acetic acid (IAA) production and the phosphate solubilization of rhizobacteria 
from Western Paraná. Isolates grown in DYGS medium plus tryptophan were quantified by colorimetry 
for the production of IAA. Iron phosphate solubilization was carried out by inoculation in modified 
Pikovskaya medium (PKV) and quantified by colorimetry. The results were evaluated by the Scott-Knott 
test at 5% using the SASM-Agri program. The highest IAA production was observed with the addition of 
tryptophan to Erwinia (219); Enterobacter (302) and Salmonella (57). Isolates Falsibacillus (438) and 
505 showed higher efficiency in the iron phosphate solubilization. Isolates Enterobacter (130), 438 and 
Enterobacter (151) were highlighted in both tests, being characterized as a great potential for use in 
biotechnological products. 
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INTRODUCTION 
 
Fertilizers represent the costliest supply in agricultural production systems, and their excessive use has 

led to contamination of groundwater rivers and soils (Sano et al., 2011). Technology and products that seek 
to mitigate the application of these products by developing more sustainable and economical agriculture 
have demonstrated that it is possible to reduce costs and increase productivity by using plant-growth-
promoting bacteria (PGPR) (Kaschuk et al., 2010; Glick 2012; Rodrigues et al., 2013). 

In soils, PGPRs act beneficially by interacting with plants improving their performance. These associative 
bacteria can act directly in the production of phytohormones, phosphate solubilization, nutrient 
mineralization and biological nitrogen fixation (BNF) (Egamberdieva et al., 2015). Many microorganisms 
have been reported as growth promoters in plants such as those of the genera Azoarcus, Azospirillum, 
Azotobacter, Arthrobacter, Bacillus, Clostridium, Enterobacter, Gluconacetobacter, Pseudomonas and 
Serratia (Sommer and Vanderleyden 2004; Beneduzi et al., 2013; Egamberdieva et al., 2015). 

One of the main mechanisms to promote plant growth is the ability to stimulate the production of 
phytohormones. Synthesis of growth regulators such as auxins, gibberellins and cytokinins can act directly 
on the plant root expansion. This effect can improve the search for water and nutrients, as well as reduce 
or block the production of ethylene (Araújo and Guerreiro 2010; Balota 2017). 
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Production of auxins such as 3-indoleacetic acid (IAA) is performed by many rhizobacteria, and their 
synthesis occurs via different metabolic pathways. The main precursor of this compound is tryptophan 
(Tpr), which presents an independent route concentrating the production of IAA in tissues with high growth 
rate, such as apical meristems, young leaves, fruits and seeds (Taiz and Zeiger 2004; Florentino 2017). In the 
studies by Brzezinski et al. (2014), strains of Azospirillum brasilense were able to promote increase in the 
vigor of wheat seeds and in the aerial part of seedlings. Similarly, Dartora et al. (2013) observed gains in the 
initial development of plants inoculated with Azospirillum e Herbaspirillum. 

Another mechanism used by rhizobacteria to promote plant growth is the phosphate solubilization. 
Among the various forms of action of these microorganisms in the increase of phosphorus availability to 
plants, the release of organic acids stands out the excretion of siderophores into inorganic phosphates and 
the production of enzyme phosphatases (Patino-Torres and Sanclemente-Reyes 2014; Balota 2017). Studies 
on this pathway have been relevant to research on tropical soils, since they present low levels of 
phosphorus due to high weathering and retention of their ions in iron and aluminum oxides. In these 
conditions, this macronutrient becomes unavailable to plants, one alternative being the association with 
phosphate solubilizing bacteria (PSB) to improve the absorption of these minerals (Chaves et al., 2013). 

Arruda et al. (2013) demonstrated the great ability of native isolates for phosphate solubilization and 
plant growth promotion. In both cases, rhizobacteria were isolated from corn; in the first, among 173 
isolates, about 56.5% had a positive effect in vitro. In the second, out of 292 isolates, 154 (52.7%) were 
found to be efficient in the solubilization of this nutrient. Pedrinho et al. (2010) also observed that, out of 
58 bacteria obtained from corn roots, 27 (46.5%) presented a solubilization halo around the colony. 

In this context, the present study aimed to evaluate the production of phytohormones (IAA) and 
phosphate solubilization performed by rhizobacteria in the western region of Paraná with different 
cultivation management, aiming at identifying strains with biotechnological potential for promoting growth. 

 

MATERIAL AND METHODS 
 

Obtaining the isolates 

For biochemical analyzes, 42 bacteria were selected from the culture collection of the biotechnology 
laboratory (LABIOTEC) of the Federal University of Paraná (UFPR) – Palotina Sector. These isolated were 
obtained from rhizospheric soils of 17 cultivated areas with different managements in the western region of  
Paraná state. 

 

Determination of IAA production  

The isolates were grown in DYGS tryptophan, until final concentration of 100μg.ml-¹. The tubes were 
incubated for 48 hours at 180 rpm at 20ºC in a shaker and centrifuged at 9000 rpm for 5 minutes to obtain 
the cell free extract. Then, the samples were quantified by the colorimetric method using the modified 
Salkowsky reagent (40 mM FeCl3; 7,9 M H2SO4) (Sarwar and Kremer 1995). IAA production was calculated 
by absorbance readings in a spectrophotometer at 530 nm. Strains grown in DYGS medium without 
tryptophan were used as negative control. To build a standard curve, readings of increasing concentrations 
of commercial 3-indole acetic acid were used (0, 2, 4, 8, 10, 15, 20, 25 and 30 μg mL-1). 

The protein concentration was performed by the Bradford method (1976) for normalization of extracts 
concentration in absorbance readings at 595 nm. The IAA standard curve resulted in the equation y = 
0,0052x + 0, 0287, where “y” represents the amount of auxin secreted in the liquid culture. A Standard 
curve using bovine serum albumin (BSA) was determined for obtaining the total proteins by the Bradford 
method (1976). In this purpose, concentrations 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 μg mL, 
respectively, were used and generated the equation y = 0,0041x – 0,0045. The absorbance data were 
replaced in the equation, and the x value obtained was reported as µg/ml. 

 

Phosphate solubility capacity 

To quantify iron phosphate solubilization by the spectrophotometric method, the molybdenum blue 
(Murphy and Riley 1962) was used. Aliquots of 100 μL of each sample, grown in liquid DYGS medium were 
inoculated in modified medium of Pikovskaya (1948), incubated for 7 days at 28ºC, under constant shaking 
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of 1810 rpm. From the cells free extract, 1 mL was withdrawn and 2 mL of MWS (Molybdate Working 
Solution) was added, as well as 50 μL of ascorbic acid. The sample was shaken quickly and filtered for 
reading in the spectrophotometer at 660 nm. The experiments were carried out in triplicate and as control 
the PKV medium was used without inoculum addition. The data obtained were compared to the standard 
curve of phosphate at concentrations 0.0; 0.5; 1.0; 2.0; 3.0 and 4.0 mg/L-1 of PO4, respectively and, yielded 
the equation y = 0,125x + 0,0194. 

 

Statistical analysis 

The assays were analyzed by a completely randomized design with three replicates and submitted to 
variance analysis, the means were compared using the Scott-Knott group test with 5% significance level 
using the SASM-Agri software (Canteri et al., 2001). 

 

RESULTS AND DISCUSSION 
 

Out of 42 bacteria, IAA production was identified in 36 of them without TPR supplementation, and in 40 
with TPR. The genus Erwinia (219) stood out, demonstrating a production of 1741.31 µM/mg in the 
presence of tryptophan.  

Similar results were obtained for Tozlu et al. (2012), who performed the evaluation of the biological 
fixation efficiency of ten bacterial strains, the phosphate solubilization. The bacterial production capacity of 
IAA belonging to the genus Erwinia was higher (Table 1). 

The IAA producing bacteria is related to the capacity of tolerance to the modification occurring in the 
edaphic environment, as pH, carbon availability, nitrogen and the tryptophan concentration (Mohite 2013). 
Among all isolates evaluated, 2 did not present IAA with and without tryptophan. There was also great 
variation in IAA production in the isolates in the presence of the amino acid (Table 1). Therefore, the 
average IAA production of all isolates in the absence of tryptophan were 289.86 μM / mg, lower value than 
that obtained in the presence of the precursor, 480.93 μM/mg. 

The production of auxins, such as 3-indoleacetic acid (IAA), is a characteristic present in about 80% of the 
rhizobacteria. Therefore, some strains like Azospirillum, Lipoferum and Azospirillum brasiliense, have high 
capacity of this metabolite production from its precursor (Balota 2017). In addition, it was possible to note 
that some strains Enterobacter (24, 203), Enterobacter agglomerans (132), Microbacterium (220, 241, 317), 
Falsibacillus (446, 580) and 660, in the absence of tryptophan amino acid, demonstrated a higher 
production of IAA, pointing those isolates for further investigations. For Isolates 219 (Erwinia), 57 
(Salmonella bongori) and 241 (Microbacterium), the presence of the precursor was determinant in the 
production of IAA, showing increases, respectively, of 369.61%, 126.40% and 402.58%. 

According to Bar and Okon (1993) and Florentino (2017), tryptophan is the main metabolic pathway for 
the production of IAA. The amount of this precursor may interfere with the phytohormone synthesis since 
each genus of bacteria has an optimum concentration. Also, values outside this range can affect the 
enzymatic production efficiency. According to Bhattacharyya and Jha (2011), in recent studies, new 
biochemical routes are being used for the synthesis of auxins. 

In relation to the phosphate solubilization capacity by the same bacterial strains, the results showed low 
concentrations. Reports by Prasanna et al. (2011) and Chaiharn and Lumyong (2011) describe bacteria with 
great capacity for phosphate solubilization. In the first study, Enterobacter aerogenes produced 825.8 mg.L-

1, whereas in the second, the isolate Acinetobacter showed a production of 334 mg.L-1. In this study, the 
amount of solubilization considered effective for plants was observed only in strains 438 (Falsibacillus) 
(114.49 mg. L-1), with an efficiency of 25.27% and in strain 505 (83.06 mg. L-1), with an efficiency of 18,34%.  

According to Guang-Can et al. (2008), most bacteria can solubilize phosphate from calcium phosphate, 
but not all of them can extract phosphate from other sources like iron or aluminum phosphate. Panda et al. 
(2016), evaluated phosphate solubilization from three different sources: iron, aluminium and calcium 
phosphates, in the latter the solubilization was higher than in the others. 

In this research, Enterobacter spp (130), Falsibaccilus (438) and Enterobacter asburiae (151) strains were 
the most efficient in both biochemical tests. Strain 130 (Enterobacter spp.) showed 38.42 mg.L-1, an 
efficiency of 12.37% of iron phosphate solubilization, and 745.65 μM/mg of IAA production. Strain 438 was 
the one that obtained the highest phosphate solubilization, 114.49 mg.L-1, with an efficiency of 25.27% and 
had 586.83 μM/mg of IAA production. Strain 151 showed 49.25 mg.L-1 and efficiency of 10.87% of 
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phosphate solubilization and a production of 882.88 μM/mg of IAA. 
 

Table1. Quantification of the IAA production with and without tryptophan and phosphate solubilization 
efficiency of native rhizobacteria from the Western Region of Paraná. 
 

Isolates 

Without 

tryptophan 

(µM/mg) 

With 

tryptophan1 

(µM/mg) 

Soluble phosphate1  

(mg.L-¹ de 

FeO4P.2H2O) 

Solubilization 

Efficiency (%) 

Pantoea (10) 209.00 741.73 - - 

Enterobacter (24) 641.17 567.35 12.78  2.82 

Enterobacter (34) - 1.73 - - 

Enterobacter asburiae (42) 473.75 726.15 26.75  5.91 

Salmonella bongori (57) 526.75 1192.58 21.86  4.83 

592 483.38 901.93 - - 

Microbacterium (103) - - 25.15  5.55 

Delftia (109) 117.67 683.42 - - 

Enterobacter (120) 436.57 501.38 17.98  3.97 

Enterobacter (130) 377.13 745.65 38.42  12.37 

Enterobacter asburiae (151) 498.91 882.88 49.25  10.87 

Enterobacter asburiae (142) 432.63 443.67 17.25  3.81 

Enterobacter agglomerans (132) 390.64 338.00 19.12  4.22 

Enterobacter (152) 511.00 927.92 13.84  3.06 

Enterobacter (194) 409.45 964.83 - - 

Enterobacter (203) 140.67 88.94 22.82  5.04 

Delftia (208) 210.89 508.00 13.79  3.04 

Erwinia (219) 363.07 1741.31 15.97  3.53 

Microbacterium (220) 477.91 449.60 23.40  5.17 

Microbacterium paraoxydans (232) - - - - 

Microbacterium (241) 468.22 167.21 23.99  5.29 

2552 432.31 477.96 56.92  12.56 

Enterobacter (265) 264.96 344.98 32.52  7.18 

Delftia (273) 118.28 118.33 39.99  8.83 

Agrobacterium tumefaciens (292) - 111.30  26.84  5.93 

Enterobacter asburiae (299) 257.67 537.81  32.50  7.17 

Pantoea anatis (300) 120.71 309.15  7.05  1.56 

Enterobacter (302) 392.00 1259.81  41.50  9.16 

Microbacterium (317) 47.91 28.84  - - 

Enterobacter (326) 330.67 850.57  32.93  7.27 

Falsibacillus (438) 230.73 586.83  114.49  25.27 

Falsibacillus (446) 313.78 41.24  - - 

Bacillus (454) - 122.21  - - 

4562 59.50 161.87  16.52  3.65 

4712 67.31 338.29  - - 

4822 70.23 74.29  - - 

4932 149.68 284.05  21.65  4.78 

5052 143.67 234.05  83.06  18.34 

5222 49.18 96.84  - - 

Pseudomonas (535) 130.69 423.13  - - 

Falsibacillus (580) 269.17 200.00  - - 

6602 107.55 59.60 26.40 5.83 

Coefficient of Variation (%)  36.00 34.11  
1Means followed by the same letter in the column do not differ significantly among isolates by the Scott-Knot test at 
5% probability of error. 2Number of isolates which do not have DNA sequencing. 

De Souza et al. (2018), evaluating the potential of bacteria of the genus Enterobacter in the promotion of 
plant growth, observed positive results regarding the production of IAA (27 μM/mg), which resulted in gains 
in soybean seedling growth. In the research by Assumpção et al. (2010), the production of 31.7 μM/mg of 
IAA by bacteria of the same genus and with the capacity of phosphate solubilization was found, but without 
promoting soybean plants growth. 
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In this context, the present work was able to evaluate the bacteria from the western region of Paraná in 
two promoting plant growth factors, developing a better understanding of plant-bacterial interactions, 
allowing the continuity of the search for new bacteria with biotechnological potential for plant-growth 
promotion. 

 

CONCLUSIONS 
 

The isolates Erwinia (Enterobacter soli) (219), Enterobacter (302) and Salmonella bongori (57) were 
identified as the most efficient for the production of IAA. For the phosphate solubilization, the strain 438 
(Falsibaccilus) was the most efficient, followed by strain 505. Enterobacter (130), Falsibacillus (438) and 
Enterobacter asburiae (151) isolates were the most efficient in both biochemical testes performed. 
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