Factor analysis and environmental stratification in the assessment of grain sorghum adaptability and stability

Keywords: Sorghum bicolor, multi-environment trials, factor analytic models, animal feed, replacing corn, human food, flour for manufacture

Abstract

The environmental stratification studies are crucial when releasing hybrids for different growing regions. An outstanding performance of a genotype in one environment does not qualify it for indication to all environments, due the occurrence of GxE interaction. Environmental stratification aim the breeders to form groups of environments that minimize GxE interaction. The purpose of this work was to evaluate the use of factor analysis in preliminary environmental stratification assisting at the recommendation of grain sorghum cultivars. Twenty-five hybrids were evaluated, using a randomized block design, in 12 locations during the 2015/16 season. Initially, the individual analysis of the experiments was carried out and later the joint analysis, aiming to examine the existence of G�?E interaction. The means of the hybrids in the individual analyses were used to obtain the correlation matrix between pairs of environments. The factorization of this matrix was also carried out via factor analysis in order to group together the environments that most correlated with respect to the hybrids performance. Thus, differential performance between hybrids was observed through individual analyses for all the environments, with the exception of Sete Lagoas and Teresina. The joint analysis revealed the existence of a significant G�?E interaction, that is, a differential behavior of the hybrids in relation to the evaluated environments. Based on the criterion of the analysis of the proportion of explained variance, it was found that six factors captured an accumulated variation of 86.29%, and the average communality observed was of 0.86. Considering the geographic and edaphoclimatic variables in the cultivation period, a pattern was not observed among the grouped places, but it is noteworthy that the grouping of places is a function of the performance of the evaluated genotypes, which can be similar even under different conditions. Given the results presented, factor analysis proved to be a tool with potential to perform environmental stratification and assist in the recommendation of grain sorghum cultivars for different regions.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

References

Andrade, L. C., Menezes, C. B., Silva, K. J., Santos, C. V., Emygdio, B. M., & Tardin, F. D. (2016). Avaliação de produtividade , adaptabilidade e estabilidade genotípica de sorgo granífero em três ambientes. Revista Agroprcuária Técnica, 37(0100�??7467), 36�??43.

Bernardo, R. (2010). Breeding for quantitative traits in plants. Woodbury, MN, USA: Stemma Press.

Carvalho, I. R., Eickhoff, F. G., Silva, T. S., Schulz, A. D., Ourique, R. S., Malheiros, T. F., �?� Hutra, D. J. (2021a). Cultivation of maize in different environments and their effects on agronomic traits. Agronomy Science and Biotechnology, 7, 1�??11. https://doi.org/10.33158/asb.r125.v7.2021

Carvalho, I. R., Peter, M., Demari, G. H., Lautenchleger, F., Carlos, F. S., Pedó, T., �?� Loro, M. V. (2021b). Efficiency in nitrogen management using conventional and transgenic technology in the cultivation of maize. Agronomy Science and Biotechnology, 7, 1�??12. https://doi.org/10.33158/asb.r124.v7.2021

CONAB - Companhia Nacional de Abastecimento. (2018). Sorgo. 11º Levantamento da Safra CONAB. Retrieved from http://www.conab.gov.br/index.../16482_45de496aac454b837dd01c66c884650

Cruz, C. D., Regazzi, A. J., Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético (4th ed.). Viçosa, MG: Editora UFV.

Cruz, C. D., Regazzi, A. J., Carneiro, P. C. S. (2014). Modelos biométricos aplicados ao melhoramento genético (3rd ed.). Viçosa, MG: Editora UFV.

Cruz, C. D. (2016). Programa Genes �?? Ampliado e integrado aos aplicativos R, Matlab e Selegen. Acta Scientiarum - Agronomy, 38(4), 547�??552. https://doi.org/10.4025/actasciagron.v38i4.32629

FAO - Food and Agriculture Organization of the United Nations. (2018). Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy. Retrieved from http://www.fao.org/home/en/

Gomes, F. P. (2009). Curso de estatistica experimental (15th ed.). Piracicaba, SP: Editora ESALQ.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187�??200. https://doi.org/10.1007/BF02289233

Martino, H. S. D., Cardoso, L. M., Moraes, E. A., Sant�??ana, H. M. P., & Queiroz, V. A. V. (2014). Por que utilizar o sorgo na alimentação humana? Brasília, DF: Embrapa Milho e Sorgo. Retrieved from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/993054/por-que-utilizar-o-sorgo-na-alimentacao-humana

Martins, L. S., Menezes, C. B., Simon, G. A., Silva, A. G., Tardin, F. D., & Gonçalves, F. H. (2016). Adaptability and stability of grain sorghum hybrids in Southwest of Goias. Revista Agrarian, 9, 334�??347. Retrieved from http://ojs.ufgd.edu.br/.../3719

Murakami, D. M., & Cruz, C. D. (2004). Proposal of methodologies for environment stratification and analysis of genotype adaptability. Cropp Breeding and Applied Biotechnology, 4(1), 7�??11. https://doi.org/10.12702/1984-7033.v04n01a02

Oliveira, I. C. M., Guilhen, J. H. S., Ribeiro, P. C. de O., Gezan, S. A., Schaffert, R. E., Simeone, M. L. F., �?� Pastina, M. M. (2020). Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates. Field Crops Research, 257(June), 1�??10. https://doi.org/10.1016/j.fcr.2020.107929

R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Ribas, P. M. (2014). Origem e importância econômica. In R. A. C. Borém, A., Pimentel, L. D., Parrella (Ed.), Sorgo: do plantio à colheita. Viçosa, MG: Editora UFV.

Rocha, J. R. A. S. C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52�??60. https://doi.org/10.1111/gcbb.12443

Rooney, W. (2007). Sorghum breeding. In G. Acquaah (Ed.), Principles of plant genetics and breeding. Blackwell Publishing.

Silva, K. J., Menezes, C. B., Tardin, F. D., Silva, A. R., Cardoso, M. J., Bastos, E. A., & Godinho, V. P. C. (2016). Selection of grain sorghum for grain productivity, adaptability and stability. Revista Brasileira de Milho e Sorgo, 15(1676�??689X), 335�??345. https://doi.org/10.18512/1980-6477/rbms.v15n2p335-345

Silva, K. J., Menezes, C. B., Tardin, F. D., Emygdio, B. M., Souza, V. F., Carvalho, G. A., & Silva, M. J. (2013). Selection of sorghum hybrids cultivated in summer in three locations. Revista Brasileira de Milho e Sorgo, 12(1), 44�??53.

Published
2021-07-09
How to Cite
Ribeiro, P. C. O., Salvador, F. V., Oliveira, I. C. M., & Menezes, C. B. (2021). Factor analysis and environmental stratification in the assessment of grain sorghum adaptability and stability. Agronomy Science and Biotechnology, 7, 1-8. https://doi.org/10.33158/ASB.r134.v7.2021

Most read articles by the same author(s)