Carrageenan as an elicitor of wheat's mechanisms of defense

  • Rafael Dal Bosco Ducatti Universidade Tecnologica Federal do Paraná https://orcid.org/0000-0001-8916-6557
  • Siumar Pedro Tironi Universidade Federal da Fronteira Sul
  • João Américo Wordell Filho Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina
  • Sérgio Miguel Mazaro Universidade Tecnológica Federal do Paraná
Keywords: ASM, mycotoxins, powdery mildew, Solieria chordalis, Triticum aestivum

Abstract

Wheat represents an important staple food for human and animal nutrition. However, it constantly suffers from the incidence of biotic and abiotic stresses which reduce yields and kernels quality. The goal with this study was to use the elicitors Acibenzolar-S-Methyl and Carrageenan to elicit the mechanisms of defense of wheat to increase kernels quality and yields. The work was conducted as a random block design with six treatments and two wheat cultivars (TBIO Audaz and TBIO Noble) in Chapecó, SC, Brazil during the harvest season of 2020. Parcels had a size of 5.0 m2 and were spread apart by 80 cm of distance. The incidence of foliar/ear diseases, seed pathological and mycotoxicological (deoxynivalenol - DON) analyses were performed. The best dosage of carrageenan (Algomel PUSH®) for wheat plants has been accessed during this work. The use of the elicitors combined with the time of application, the proximity of the parcels and the drastic climatic conditions encountered in 2020 for the area of study did not result in significant yield gain nor in kernels quality. A weak correlation between Fusarium Head Blight and DON accumulation was observed. The elicitors showed to be a great tool for the suppression of foliar diseases for a period of roughly 20 days. The best dose-response of carrageenan is of 1.21 L ha-1.

Downloads

Download data is not yet available.

References

Alves, G. C. S., Santos, L. C., Duarte, H. S. S., Dias, V., Zambolim, L., & Rocha, M. R. (2015). Escala diagramática para quantificação da ferrugem da folha do trigo. Multi-Science Journal, 1(1), 128�??133. https://doi.org/10.33837/msj.v1i1.59

Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8(4), e23681. https://doi.org/10.4161/psb.23681

Cooper, R. (2015). Re-discovering ancient wheat varieties as functional foods. Journal of Traditional and Complementary Medicine, 5(3), 138�??143. https://doi.org/10.1016/j.jtcme.2015.02.004

Costamilan, L. M., & Scheeren, P. L. (2006). Comportamento de genótipos de trigo, oriundos do Paraná, quanto à severidade de oídio, na safra 2006. Passo Fundo, RS: Embrapa Trigo. Documento, 65. http://www.cnpt.embrapa.br/biblio/do/p_do65_1.htm

Dixon, J., Braun, H.-J., Kosina, P., & Crouch, J. (2009). Wheat Facts and Futures. Mexico: CIMMYT.

Domiciano, G. P., Duarte, H. S. S., Moreira, E. N., & Rodrigues, F. A. (2013). Development and validation of a set of standard area diagrams to aid in estimation of spot blotch severity on wheat leaves. Plant Pathology, 65(4), 922�??928. https://doi.org/10.1111/ppa.12150

Ducatti, R. D. B., Anunciação, C. R., Sartori, V. C., Piva, M. B. C., Comunello, L., & Tironi, S. P. (2021a). Use of carrageenan for the reduction of deoxynivalenol contamination in wheat and barley kernels. Journal of Biotechnology and Biodiversity, 9(1), 40�??47. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.ducatti

Ducatti, R. D. B., Tironi, S. P., & Mazaro, S. M. (2021b). An algal sulphated polysaccharide capable of reducing mycotoxin biosynthesis by Fusarium. Communications in Plant Science, 11, 57�??59. https://doi.org/10.26814/cps2021007

FAO - Food and Agriculture Organization. (2021). Faostats: Wheat. FAO. Wheat. http://www.fao.org/faostat/en/#data

Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., & Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8(4), 629�??643. https://doi.org/10.1105/tpc.8.4.629

Guerra, F. G., Rodrigues, G. C., Rocha, O. C., & Evangelista, W. (2003). Necessidade hídrica no cultivo de feijão, trigo, milho e arroz sob irrigação no bioma cerrado. Planaltina, DF: Embrapa Cerrados.

McMullen, M., Bergstrom, G. Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Sanford, D. V. (2012). A unified effort to fight and enemy of wheat and barley: Fusarium head blight. Plant Disease, 96(12), 1712�??1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

Monteiro, G. C., & Lima, G. P. P. (2017a). Catalase (CAT). Botucatu, SP: Laboratório de Química e Bioquímica Vegetal �?? LQBV. Universidade Estadual Paulista. https://www.ibb.unesp.br/Home/ensino/departamentos/quimicaebioquimica/metodo-da-atividade-da-catalase-cat.pdf

Monteiro, G. C., & Lima, G. P. P. (2017b). Botucatu, SP: Laboratório de Química e Bioquímica Vegetal �?? LQBV. Universidade Estadual Paulista. https://www.ibb.unesp.br/Home/ensino/departamentos/quimicaebioquimica/metodo-da-atividade-da-superoxido-dismutase-sod.pdf

Monteiro, G. C., & Lima, G. P. P. (2017c). Phenylalanine Ammonia Lyase (FAL). Botucatu, SP: Laboratório de Química e Bioquímica Vegetal �?? LQBV. Universidade Estadual Paulista.

https://www.ibb.unesp.br/Home/ensino/departamentos/quimicaebioquimica/metodo-da-atividade-da-fenilanina-amonia-liase-pal.pdf

Moreno-Pérez, A., Martínez-Ferri, E., Pliego-Alfaro, F., & Pliego, C. (2020). Elicitors and plant defence. JOJ Horticulture & Arboriculture, 2(5), 95�??99. https://doi.org/10.19080/JOJHA.2020.02.555600

Ponte, E. M. D., Garda-Buffon, J., & Badiale-Furlong, E. (2012). Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chemistry, 132(2), 1087�??1091. https://doi.org/10.1016/j.foodchem.2011.10.108

Ponts, N. (2015). Mycotoxins are a component of Fusarium graminearum stress-response system. Frontiers in Microbiology, 6, 1234. https://doi.org/10.3389/fmicb.2015.01234

Randhawa, M. S., Bhavani, S., Singh, P. K., Huerta-Espino, J., & Singh, R. P. (2019). Disease Resistance in Wheat: Present Status and Future Prospects. In: S. H. Wani (Ed.), Disease Resistance in Crop Plants (pp. 61-81). Cham.: Springer. https://doi.org/10.1007/978-3-030-20728-1_4

Saucedo, S., Contreras, R. A., & Moenne, A. (2015). Oligo-carrageenan kappa increases C, N and S assimilation, auxin and gibberellin contents, and growth in Pinus radiata trees. Journal of Forest Research, 26, 635�??640. https://doi.org/10.1007/s11676-015-0061-9

Shukla, P. S., Borza, T., Critchley, A.T., & Prithiviraj, B. (2016). Carrageenans from red seaweeds as promoters of growth and elicitors of defense responses in plants. Frontiers in Marine Science, 3, 81. https://doi.org/10.3389/fmars.2016.00081

Stack, R. W., & Mcmullen, M. P. (2011). A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota State University. NDSU Extension Service.

Wegulo, S. N. (2012). Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins, 4(11), 1157�??1180. https://doi.org/10.3390/toxins4111157

Published
2022-02-25
How to Cite
Dal Bosco Ducatti, R., Tironi, S. P., Wordell Filho, J. A., & Mazaro, S. M. (2022). Carrageenan as an elicitor of wheat’s mechanisms of defense. Agronomy Science and Biotechnology, 8, 1-11. https://doi.org/10.33158/ASB.r152.v8.2022