Glyphosate and aminomethyphosphonic (AMPA) contents in Brazilian field crops soils

Keywords: Glyphosate, AMPA, field crop, weed management, Brazil, persistence

Abstract

Because of a lack of direct measurements, the presence and persistence of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in agricultural soils of Brazil remains unknown. This paper aims at reporting glyphosate and AMPA contents in Brazilian field crop soils at the country scale from southern states to eastern Amazon. Brazilian field crop farmers are among the highest users of glyphosate-based herbicides (GBH) in the world. Soybean and corn field crop soils from 17 sites were collected at two depths (i.e. 0-20 cm and 20-40 cm) in 2016 and 2018. The study area encompasses three regions of Brazil: southern Brazil, central-west Brazil and eastern Amazon, all having in common intensive, conventional, large-scale grain farming. ßGlyphosate and AMPA contents were measured using a GC-ECD following soil extraction. Both chemicals were ubiquitously detected in soils cultivated under various agricultural practices ranging from ploughing to no-till ones. Average measured glyphosate and AMPA contents were 0.08 ± 0.09 µg/g and 0.17 ± 0.16 µg/g respectively with maximum values of 0.57 µg/g and 0.98 µg/g. Glyphosate plus AMPA contents in the top 40 cm of soils presented cumulated amounts exceeding the annual glyphosate inputs via GBH. This is interpreted as a multiannual persistence of these chemicals in Brazilian agricultural soils. Downward migration of glyphosate and AMPA is also suspected with regard to the vertical distribution of these chemicals along with deeper soil horizons. This study highlights the backlash of conservation agriculture as far as glyphosate and AMPA presence in agricultural soils are concerned. These compounds persistence in Brazilian soils appear to be longer than what is usually reported in the literature, especially so for tropical environments. The worldwide concern about the ubiquitous presence of glyphosate and AMPA in the environment needs a broader screening in Brazilian field crop soils since the majority of the available data comes from Argentina, Europe and to a lesser extent North America.

Downloads

Download data is not yet available.

References

Alferness, P. L., & Iwata, Y. (1994). Determination of Glyphosate and (Aminomethyl)phosphonic Acid in Soil, Plant and Animal Matrixes, and Water by Capillary Gas Chromatography with Mass-Selective Detection. Journal of Agricultural and Food Chemistry, 42, 2751-2759. https://doi.org/10.1021/jf00048a020

Alonso, L. L., Demetrio, P. M., Agustina, E. M., & Marino, D. J. (2018). Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Science of The Total Environment, 645, 89-96. https://doi.org/10.1016/j.scitotenv.2018.07.134

Aparicio, V. C., Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93, 1866-1873. https://doi.org/10.1016/j.chemosphere.2013.06.041

Araújo, A. S. F., Monteiro, R. T. R., & Abarkeli, R. B. (2003). Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, 52, 799-804. https://doi.org/10.1016/S0045-6535(03)00266-2

Benachour, N., Sipahutar, H., Moslemi, S., Gasnier, C., Carine, T., & Seralini, G. E. (2007). Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells. Archives of Environmental Contamination and Toxicology, 53, 126-33. https://doi.org/10.1007/s00244-006-0154-8

Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(3), 1-15. https://doi.org/10.1186/s12302-016-0070-0

Bento, C. P. M., Yang, X., Gort, G., Xue, S., Dam, R., Zomer, P., Mol, H. G. J., Ritsema, C. J., & Geissen, V. (2016). Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of The Total Environment, 572, 301-311. https://doi.org/10.1016/j.scitotenv.2016.07.215

Bergström, L., Börjesson, E., & Stenström, J. (2011). Laboratory and Lysimeter Studies of Glyphosate and Aminomethylphosphonic Acid in a Sand and a Clay Soil. Journal of Environmental Quality, 40, 98-108. https://doi.org/10.2134/jeq2010.0179

Bohm, G., Rombaldi, C., Genovese, M., Castilhos, D., Alves, B., & Rumjanek, N. (2014). Glyphosate Effects on Yield, Nitrogen Fixation, and Seed Quality in Glyphosate-Resistant Soybean. Crop Science, 54, 1737. https://doi.org/10.2135/cropsci2013.07.0470

Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J., & Primicerio, R. (2014). Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 153, 207-15. https://doi.org/10.1016/j.foodchem.2013.12.054

Bonfleur, E., Lavorenti, A., & Tornisielo, V. (2011). Mineralization and degradation of glyphosate and atrazine applied in combination in a Brazilian Oxisol. Journal of Environmental Science and Health, Part. B, Pesticides, food contaminants, and agricultural wastes, 46(1), 69-75. https://doi.org/10.1080/03601234.2011.534384

Borggaard, O., & Gimsing, A. (2008). Fate of Glyphosate in Soil and the Possibility of Leaching to Ground and Surface Waters: A Review. Pest Management Science, 64, 441-56. https://doi.org/10.1002/ps.1512

Candela, L., Caballero, J., & Ronen, D. (2010). Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions - Barcelona, Spain. Science of the Total Environment, 408(12), 2509-2516. https://doi.org/10.1016/j.scitotenv.2010.03.006

Cecilia, D., & Maggi, F. (2017). Analysis of glyphosate degradation in a soil microcosm. Environmental Pollution, 233, 201-207. https://doi.org/10.1016/j.envpol.2017.10.017

Denardin, J., E., Kochhann, R., A., Silva Junior, J. P., Wiethölter, S., Faganello, A., Sattler, A., & Santi, A. (2012). Sistema plantio direto: evolução e implementação. In Pires, J. L. F., Vargas, L., & Cunha, G. R. (eds.). Trigo no Brasil: Bases para produção competitiva e sustentavel (p. 185–216). Passo Fundo, RS: Embrapa Trigo.

Denardin, R. B. N., Mattias, J. L., Wildner, L. P., Nesi, C. N., Sordi, A., Kolling, D. F., Busnello, F. J., & Cerutti, T. (2014). Estoque de carbono no solo sob diferentes formações florestais, Chapecó - SC. Ciência Florestal, 24(1), 59–69. https://doi.org/10.5902/1980509813323

Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64, 319-25. https://doi.org/10.1002/ps.1518

Durigan, M. R., Cherubin, M. R., Camargo, P. B., Ferreira, J. N., Berenguer, E., Gardner, T. A., Barlow, J., Dias, C. T. S., Signor, D., Junior, R. C. O., & Cerri, C. E. P. (2017). Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability, 9, 379. https://doi.org/10.3390/su9030379

Evans, S., Shaw, E., & Rypstra, A. (2010). Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology, 19, 1249-57. https://doi.org/10.1007/s10646-010-0509-9

Fernandes, G., Aparicio, V., Gerónimo, E., Bastos, M., Labanowski, J., Prestes, O., Zanella, R., & Santos, D. (2018). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377–1387. https://doi.org/10.1016/j.scitotenv.2018.09.292

Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M. C., & Séralini, G. E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262, 184-91. https://doi.org/10.1016/j.tox.2009.06.006

Gillezeau, C., Gerwen, M., Shaffer, R. M., Rana, I., Zhang, L., Sheppard, L., & Taioli, E. (2019). The evidence of human exposure to glyphosate: a review. Environmental Health, 18(2), 1-14. https://doi.org/10.1186/s12940-018-0435-5

Helander, M., Saloniemi, I., & Saikkonen, K. (2012). Glyphosate in northern ecosystems. Trends in Plant Science, 17, 569-74. https://doi.org/10.1016/j.tplants.2012.05.008

IARC - International Agency for Research on Cancer. (2017). Some Organophosphate Insecticides and Herbicides. Lyon, FR: © International Agency for Research on Cancer, 2017.

Kabala, C., Labaz, B. (2018). Relationships between soil pH and base saturation - Conclusions for Polish and international soil classifications. Soil Science Annual, 69, 206-214. https://doi.org/10.2478/ssa-2018-0021

Kanissery, R., Gairhe, B., Kadyampakeni, D., Batuman, O., & Alferez, F. (2019). Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants, 8, 499. https://doi.org/10.3390/plants8110499

Kummu, M., & Olli, V. (2010). The world by latitudes: A global analysis of human population, development level and environment across the north-south axis over the past half century. Applied Geography, 31, 495-507. https://doi.org/10.1016/j.apgeog.2010.10.009

Laitinen, P., Siimes, K., Eronen, L., Rämö, S., Welling, L., Oinonen, S., Mattsoff, L., & Ruohonen-Lehto, M. (2006). Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Management Science, 62, 473-91. https://doi.org/10.1002/ps.1186

Li. H., Joshi, S., & Jaisi, D. (2015). Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid. Journal of Agricultural and Food Chemistry, 64(3), 529–538. https://doi.org/10.1021/acs.jafc.5b04838

Lupi, L., Miglioranza, K. S. B., Aparicio, V. C., Marino, D., Bedmar, F., & Wunderlin, D. A. (2015). Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Science of The Total Environment, 536, 687-694. https://doi.org/10.1016/j.scitotenv.2015.07.090

Maggi, F., Cecilia, D., Tang, F., Bratney, A. (2020). The global environmental hazard of glyphosate use. Science of The Total Environment 717, 137-167. https://doi.org/10.1016/j.scitotenv.2020.137167

Martinez, D., Loening, U., & Graham, M. (2018). Impacts of glyphosate-based herbicides on disease resistance and health of crops: a review. Environmental Sciences Europe, 30, Article number: 2. https://doi.org/10.1186/s12302-018-0131-7

Mocak, J., Bond, A., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure and Applied Chemistry, 69, 297-328. https://doi.org/10.1351/pac199769020297

Okada, E., Costa, J. L., & Bedmar, F. (2016). Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma, 263, 78-85. https://doi.org/10.1016/j.geoderma.2015.09.009

Okada, E., Costa, J., & Bedmar, F. (2017). Glyphosate Dissipation in Different Soils Under No-Till and Conventional Tillage. Pedosphere, 29(6), 773–783. https://doi.org/10.1016/S1002-0160(17)60430-2

Okada, E., Perez, D., Gerónimo, E., Aparicio, V., Massone, H., & Costa, J. (2018). Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environmental Science and Pollution Research, 25(15), 15120–15132. https://doi.org/10.1007/s11356-018-1734-7

Oliveira, A. G., Telles, L. F., Hess, R. A., Mahecha, G. A., & Oliveira, C, A., (2007). Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reproductive Toxicology, 23(2), 182–191. https://doi.org/10.1016/j.reprotox.2006.11.004

Olivo, V., Tansini, A., Carasek, F., Cordenuzzi, D., Fernandes, S., Fiori, M., Fragoso, A., & Magro J, D., (2015). Rapid method for determination of glyphosate in groundwater using high performance liquid chromatography and solid-phase extraction after derivatization. Ambiente e Agua - An Interdisciplinary Journal of Applied Science 10(2), 286–297. https://doi.org/10.4136/ambi-agua.1548

Peillex, C., & Pelletier, M., (2020). The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. Journal of Immunotoxicology, 17, 163-174. https://doi.org/10.1080/1547691X.2020.1804492

Peruzzo, P. J,, Porta, A. A., &Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156, 61-66. https://doi.org/10.1016/j.envpol.2008.01.015

Powles, S., (2010). Gene Amplification Delivers Glyphosate-Resistant Weed Evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 955-956. https://doi.org/10.1073/pnas.0913433107

Primost, J., Aparicio, V., Costa, J., & Carriquiriborde, P. (2017). Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environmental Pollution, 229, 771–779. https://doi.org/10.1016/j.envpol.2017.06.006

Relyea, R. (2005). The Lethal Impact of Roundup® on Aquatic and Terrestrial Amphibians. Ecological Applications, 15, 1118-1124. https://doi.org/10.1890/04-1291

Richard, S., Moslemi, S., Sipahuta,r H., Benachour, N., & Seralini, G. E. (2005). Differential effects of glyphosate and roundup on human placental cells and aromatase. Environmental Health Perspectives, 113, 716-20. https://doi.org/10.1289/ehp.7728

Shushkova, T., Ermakova, I., & Leontievsky, A. (2010). Glyphosate bioavailability in soil. Biodegradation, 21, 403-410. https://doi.org/10.1007/s10532-009-9310-y

Sidoli, P., Baran, N., & Angulo-Jaramillo, R. (2016). Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environmental Science and Pollution Research, 23, 5733-5742. https://doi.org/10.1007/s11356-015-5796-5

Silva, V., Montanarella, L., Jones, A., Fernández-Ugalde, O., Mol, H., Ritsema, C., & Geissen, V. (2017). Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in Agricultural topsoils of the European Union. Science of The Total Environment, 621, 1352–1359. https://doi.org/10.1016/j.scitotenv.2017.10.093

Simonsen, L., Fomsgaard, I., Svensmark, B., & Spliid, N. (2008). Fate and availability of glyphosate and AMPA in agricultural soil. Journal of Environmental Science and Health, Part. B, Pesticides, food contaminants, and agricultural wastes, 43, 365-375. https://doi.org/10.1080/03601230802062000

Smedbol, É., Lucotte, M., Maccario, S., Gomes, M., Paquet, S., Moingt, M., Mercier, L., Sobarzo, M., & Blouin, M. A. (2019). Glyphosate and Aminomethylphosphonic Acid Content in Glyphosate-Resistant Soybean Leaves, Stems, and Roots and Associated Phytotoxicity Following a Single Glyphosate-Based Herbicide Application. Journal of Agricultural and Food Chemistry, 67(22), 6133–6142. https://doi.org/10.1021/acs.jafc.9b00949

Soracco, C. G., Villarreal, R., Lozano, L., Vittori, S., Melani, E., & Marino, D. (2018). Glyphosate dynamics in a soil under conventional and no-till systems during a soybean growing season. Geoderma, 323, 13-21. https://doi.org/10.1016/j.geoderma.2018.02.041

SoyStats. (2020). International: World Soybean Production. http://soystats.com/international-world-soybean-production/

Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., & Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129–136. https://doi.org/10.1016/j.fct.2013.05.057

UNEP - United Nations Environment Program. (2001). Stockholm Convention on Persistent Organic Pollutants. Stockholm: Stockholm Convention on Persistent Organic Pollutants.

Vazquez, M. (2014). Agricultura tóxica y pueblos fumigados en Argentina. +E, 4.Ene-Dic, 28–34. https://doi.org/10.14409/extension.v1i4.4586

Villarreal, R., Soracco, C. G., Salazar, M., Bellora, G., Valdes-Abellan J., & Lozano, L. (2020). Glyphosate dynamics prediction in a soil under conventional and no-tillage systems during the crop cycle. Revista Brasileira de Ciência do Solo, 44, e0190130. https://doi.org/10.36783/18069657rbcs20190130

Zablotowicz, R., Accinelli, C., Krutz, L., & Reddy, K. (2009). Soil Depth and Tillage Effects on Glyphosate Degradation. Journal of Agricultural and Food Chemistry, 57, 4867-71. https://doi.org/10.1021/jf900272w

Published
2022-08-20
How to Cite
Giard, F., Lucotte, M., Moingt, M., & Gaspar, A. (2022). Glyphosate and aminomethyphosphonic (AMPA) contents in Brazilian field crops soils. Agronomy Science and Biotechnology, 8, 1-18. https://doi.org/10.33158/ASB.r155.v8.2022