Activated charcoal added to tissue culture media increases genotype-dependent biomass production in soybean
Abstract
Due to its important participation in the agribusiness model worldwide, soybean actively drives national economies in producing countries. However, biotic and abiotic factors caused by pests and climate changes, respectively, can disrupt its productivity and consequently the business market. For this reason, the development of plants more tolerant to these negative environmental elements has been frequently one of the goals of scientific research. In the pipeline to obtain genetically improved plants, tissue culture protocols often represent a bottleneck, since the efficiency at this stage can be genotype-dependent. Therefore, the objective of this work was to evaluate the root regeneration process of two soybean genotypes (BRS 283 and BRS 537) in four different substrates (vermiculite, sand, medium containing activated charcoal and, control �?? MS medium and glucose). The rooting development was measured by the root�??s length (cm²), dry mass (mg), volume (mm³), surface area (mm²), and diameter (mm). Results showed that in the activated charcoal medium, for both soybean genotypes, roots grew longer and presented a higher dry mass of roots, and root length when compared to vermiculite and sand substrates. We concluded that the efficiency of tissue culture is genotype-dependent since assayed genotypes presented phenotypical responses significantly different. The supplementation of tissue culture medium with active charcoal improved root growth for both genotypes. Therefore, it is likely that this medium can be also successfully applied to other soybean genotypes, or to other crops with similar tissue culture procedures to promote better rooting and plant establishment in further developmental stages.
Downloads
References
Abbasi, Z., Hooshyar, S., & Bagherieh-Najjar, M. B. (2016). Improvement of callus production and shoot regeneration using various organs of soybean (Glycine max L. Merr) by response surface methodology. In Vitro Cellular & Developmental Biology-Plant, 52 (5), 537-545. https://doi:10.1007/s11627-016-9778-1
Agarwal, S., & Kanwar, K. (2007). Comparison of genetic transformation in Morus alba L. via different regeneration systems. Plant cell reports, 26(2) 177-185. https://doi:10.1007/s00299-006-0217-3
Barbosa, E. G. G., Leite, J. P., Marin, S. R. R., Marinho, J. P., Carvalho, J. F. C., Fuganti-Pagliarini, R., Yamaguchi-Shinozaki, K., & Nepomuceno, A. L. (2012). Overexpression of the ABA-dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit. Plant Molecular Biology Reporter, 31, 719-730. https://doi:10.1007/s11105-012-0541-4
Bonga, J. M. (1985). Tissue culture techniques. In: Bonga, JM., & Durzan, D. J. Tissue culture in forestry. Dordrecht: Martinus Nijhoff, p. 4-35.
Canteri, M. G., Althaus, R. A., Virgens Filho, J. S., Giglioti, E. A., & Godoy, C. V. (2001). SASM-Agri - Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scoft-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação, 1(2), 18-24. http://www.alice.cnptia.embrapa.br/alice/handle/doc/512901.
CONAB - Companhia Nacional de Abastecimento (2021) Boletim Grãos de 2021. Brasília, DF: CONAB. https://www.conab.gov.br/info-agro/safras/graos.
Dumas, E., & Monteuuis, O. (1995). In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell, Tissue and Organ Culture, 40(3), 231-235. https://doi:10.1007/BF00048128
Fehr, W. R., & Caviness, C. E. (1977). Stages of Soybean development. Special Report, 87. Ames, IA: Iowa State University http://lib.dr.iastate.edu/specialreports/87
Ferreira, L. L., Carvalho, I. R., Lautenchleger, F., Martins, T. S., Carvalho, P. R. V., Amaral, G. C. L., �?� Loro, M. V. (2021). Soybean seedling performance in diferente seed treatments. Agronomy Science and Biotechnology, 8, 1�??11. https://doi.org/10.33158/asb.r149.v8.2022
Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B., Marin, SR., Molinari, M. D., Marcolino-Gomes, J., Mertz-Henning, L. M., Farias, J. R. B., Oliveira, M. C. N., Neumaier, N., Kanamori, N., Fujita, Y., Mizoi, J., Nakashima, K., Yamaguchi-Shinozaki, K., & Nepomuceno, A. L. (2017). Characterization of soybean genetically modified for drought tolerance in field conditions. Frontiers in Plant Science, 8, Article 448. https://doi:10.3389/fpls.2017.00448
Ghini, R. Influência das Mudanças Climáticas na Agricultura (2006) Jaguariúna, SP: Embrapa Meio Ambiente, http://www.alice.cnptia.embrapa.br/alice/handle/doc/1026278
Jia, Y., Yao, X., Zhao, M., Zhao, Q., Du, Y., Yu, C., & Xie, F. (2015). Comparison of soybean transformation efficiency and plant factors affecting transformation during the Agrobacterium infection process. International Journal of Molecular Sciences, 16(8), 18522-18543. https://doi:10.3390/ijms160818522
Jorge, L. A. C., & Silva, D. J. C. B. (2010). Safira: Manual de utilização. Livro científico (ALICE). Brasília, DF: Embrapa Instrumentação. http://www.cnpdia.embrapa.br/downloads/safira/
Klink, V. P., MacDonald, M. H., Martins, V. E., Park, S. C., Kim, K. H., Baek, S. H., & Matthews, B. F. (2008). MiniMax, a new diminutive Glycine max genotype with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell, Tissue and Organ Culture, 92(2), 183�??195. https://doi.org/10.1007/s11240-007-9323-3
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., & Li, Y. (2017). Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in plant science, 8, Article 246. https://doi:10.3389/fpls.2017.00246
Liu, H. K., Yang, C., & Wei, Z. M. (2004). Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219, 1042-1049. https://doi:10.1007/s00425-004-1310-x
Liu, H. C., & Wei, Z. M. (2005). Recent advances in soybean genetic transformation. Physiology and Molecular Biology of Plants, 31, 126-134. PMID: 15840930
Marinho, J. P., Fuganti-Pagliarini, R. Molinari, M. D. C., Marcolino-Gomes, J., Caranhoto, A. L. H., Marin, S. R. R., �?� Mertz-Henning, L. M. (2021). Overexpression of full-length and partial DREB2A enhances soybean drought tolerance. Agronomy Science and Biotechnology, 8, 1�??21. https://doi.org/10.33158/asb.r141.v8.2022
Makunga, N. P., & Staden, J. (2008). An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia Africana-lutea L. Plant Cell, Tissue and Organ Culture, 92(1), 63-72. https://doi:10.1007/s11240-007-9305-5
Mantovani, N. C., Franco, E. T. H., & Vestena, S. (2001). In vitro regeneration of Louro-pardo (Cordia trichotoma (Vellozo) Arrabida ex Steudel). Ciência Florestal, 11(2), 93-101. https://doi:10.5902/198050981658
Mulwa, R. M. S., & Bhalla, P. L. (2006). In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L. Johnson). Plant cell reports, 25(12), 1281-1286. https://doi:10.1007/s00299-006-0182-x
Oakes, A. D., Desmarais, T., Powell, W. A., & Maynard, C. A. (2016). Improving rooting and shoot tip survival of micropropagated transgenic American chestnut shoots. American Society for Horticultural Science, 51 (2), 171-176. https://doi:10.21273/HORTSCI.51.2.171
Raza, G., Singh, M. B., & Bhalla, P. L. (2017). In vitro plant regeneration from commercial cultivars of soybean. Bio Med Research International. Article ID 7379693. https://doi:10.1155/2017/7379693.
Shekhawat, M. S., & Manokari, M. (2016). In vitro propagation, micromorphological studies and ex vitro rooting of cannonball tree (Couroupita guianensis aubl.): a multipurpose threatened species. Physiology and Molecular Biology of Plants, 22(1), 131-142. https://doi:10.1007/s12298-015-0335-x
Song, Z. Y., Tian, J. L., Fu, W. Z., Li, L., Lu, L. H., Zhou, L., Shan, Z. H., Tang, G. X., & Shou, H. X. (2013) Screening Genótipos chineses de soja quanto à adequação da transformação genética mediada por Agrobacterium. Journal of Zhejiang University Science B, 14(4): 289�??298.
Thomas, T. D. (2008). The role of activated charcoal in plant tissue culture. Biotechnology advances, 26 (6), 618-631. https://doi:10.1016/j.biotechadv.2008.08.003
Treter, R. J., Carvalho, I. R., Hutra, D. J., Loro, M. V., Cavinatto, M., Lautenchleger, F., & Sfalcin, I. C. (2021). Symptoms and interrelationships of macro and micronutrients available for soybean. Agronomy Science and Biotechnology, 8, 1�??15. https://doi.org/10.33158/asb.r150.v8.2022
Xiao, W., Huang, X. L., Huang, X., Chen, Y. P., Dai, X. M., Zhao, J. T. (2007). Plant regeneration from protoplasts of Musa acuminata cv. Mas (AA) via somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 90 (2), 191-200. https://doi:10.1007/s11240-007-9241-4
Copyright (c) 2022 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.