Selection of alfalfa genotypes for dry matter yield and persistence with repeated measures
Abstract
The biggest challenge in the alfalfa breeding program is to obtain cultivars with high persistence, high productivity, and adaptability. Therefore, studies about selection methods are necessary for the success of alfalfa breeding programs. This study aimed to evaluate dry matter yield and persistence in alfalfa for selecting genotypes, using appropriate statistical models for experiments with repeated measures. The experiment was conducted at Embrapa Southeast Livestock, in São Carlos, state of São Paulo, Brazil in a randomized blocks design, in plots subdivided in time, with three replicates. Eight genotypes were evaluated, and the agronomic trait evaluated was dry matter yield. The experiments in split-plots were used with two and three errors and generalized linear models with the following correlation structures: composite symmetry (CS), heterogeneous composite symmetry (HCS), auto regressive (AR), heterogeneous auto regressive (HAR), and variance components (VC). The best model was selected according to the lowest value of the Akaike Information Criterion (AIC), and three methodologies were used to identify the genotype with greater productivity and persistence: Average test for multiple comparisons, adaptability, and stability by multi-information, and similarity between genotype and ideotype. The interaction between genotypes and cuts was significant, demonstrating the existence of the different behavior of the alfalfa genotypes over the cuts. Different methodologies allowed to measure the average yield of the alfalfa genotype and the persistence over the cuts. PSB 4 genotype demonstrated promissory behavior in terms of productivity and persistence throughout the production cycle of alfalfa.
Downloads
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction on Automatic Control, AC-19(6), 716-723.
Annicchiarico, P. (1992). Cultivar adaptation and recomendation from alfafa trials in Northern Italy. Journal of Genetics and Breeding, 46 269-278.
Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B., & Marshall, A. H. (2015). Achievements and
challenges in improving temperate perennial forage legumes. Critical Reviews in Plant Sciences, 34, 327-380. https://doi.org/ 10.1080/07352689.2014.898462
Assis, G. M. L., Ruggieri, A. C., Mercadante, M. E. Z., Camargo, G. M. F., & Carneiro Júnior, J. M. (2010). Selection of alfalfa cultivars adapted for tropical environments with repeated measures using PROC MIXED of SAS®System. Plant Genetic Resources, 8, 55-62. https://doi.org/10.1017/S1479262109990153
Brighenti, A., & Castro, C. (2008). Controle de plantas daninhas em alfafa. In: Ferreira, R.P., Rassini, J.B., Rodrigues, A.A., Freitas, A.R., Camargo, A.C., & Mendonça, F.C. (Eds.). Cultivo e utilização da alfafa nos trópicos (p. 54-93)., São Carlos: Embrapa Pecuária Sudeste.
Cecon, P. R., Silva, F. F., Ferreira, A., Ferrão, R.G., Carneiro, A. P. S., & Detmann, E. (2008). Análise de medidas repetidas na avaliação de clones de café 'Conilon'. Pesquisa Agropecuária Brasileira, 43, 1171-1176. https://doi.org/10.1590/S0100-204X2008000900011.
Cruz, C. D. (2016). Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38, 547-552. https://doi.org/10.4025/actasciagron.v38i4.32629.
Eberhart, S. A., & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x.
Edwards, G. R., & Chapman, D. (2011). Plant responses to climate and relationships with pasture persistence. Grassland Research and Practice Series, 15: 39-46.
Faveri, J., Verbyla, A. P., Pitchford, W. S., Venkatanagappa, S., & Cullis, B. R. (2015). Statistical methods for analysis of multi-harvest data from perennial pasture variety selection trials. Crop and pasture science, 66, 947–962. https://doi.org/10.1071/CP14312.
Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742-754.
Freitas, A. R., Ferreira, R. P., & Moreira, A. (2011). Análises de dados de medidas repetidas por meio do modelo linear geral e do modelo misto. Revista Ciências Agrárias, 3, 214-224.
Herrmann, D., Flajoulot, S., Barre, P., Huyghe, C., Ronfort, J., & Julier, B. (2018). Comparison of morphological traits and molecular markers to analyse diversity and structure of alfalfa (Medicago sativa L.) cultivars. Genetic Resources and Crop Evolution, 65, 527-540. https://doi.org/10.1007/s10722-017-0551-z
Hoffmann, R. (2016). Análise de regressão: uma introdução à econometria. 5th ed. Piracicaba: Universidade de São Paulo.
Kallenbach, R., Nelson, C., & Coutts, J. (2002). Yield, quality, and persistence of grazing‐ and hay‐ type alfalfa under three harvest frequencies. Agronomy Journal, 94, 1094-1103. https://doi.org/10.2134/agronj2002.1094
Keselman, H., Algina, J., Kowalchunk, R., & Wolfinger, R. (1998). A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements. Communications in Statistics – Simulation and Computation, 27, 591-604. https://doi.org/10.1080/03610919808813497
Lin, C. S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68, 193-198.
Littell, R. C., Pendergast, J., & Natarajan, R. (2000). Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine, 19, 1793-1819. https://doi.org/10.1002/1097-0258(20000715)
Nascimento, M., Ferreira, A., Nascimento, A. C. C., Silva, F. F., Ferreira, R. P., & Cruz, C. D. (2015). Multiple centroid method to evaluate the adaptability of alfalfa genotypes. Ceres, 62, 30-36. https://doi.org/10.1590/0034-737X201562010004
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., & Grisel, O. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12: 2825-2830.
Pimentel-Gomes, F. (2009). Curso de estatística experimental. Piracicaba:FEALQ. .
Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2011). R Development Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-102.
R Development Core Team. (2019). R: A Language and Environment for Statistical Computing.: Vienna, Austria: R Foundation for Statistical Computing. Available from http://www.R-project.org/
Riday, H., & Brummer, E.C. (2006). Persistence and Yield Stability of Intersubspecific Alfalfa Hybrids. Crop Science, 46, 1058-1063. https://doi.org/10.2135/cropsci2005.0272
Rodriguez, N. E., & Eroles, S. F. (2008). Morfologia da alfafa. In: Ferreira, R. P., Rassini, J. B., Rodrigues, A. A,, Freitas, A. R., Camargo, A. C., & Mendonça, F. C. (Eds.). Cultivo e utilização da alfafa nos trópicos (p. 16-36). São Carlos: Embrapa Pecuária Sudeste,.
Santos, I. G., Rocha, J. R. A. S. C., Vigna, B. B. Z., Cruz, C. D., Ferreira, R. P., Basigalup, D. H., & Marchini, R. M. S. (2020). Exploring the diversity of alfalfa within Brazil for tropical production. Euphytica, 216, 72. https://doi.org/10.1007/s10681-020-02606-w
Silva Júnior, A. C., Silva, M. J., Costa, W. G., Souza, I. C., Nascimento, M., Soares, P. C. S., & Cruz, C. D. (2022). Multi-information analysis for recommendation of flooded-irrigated rice for adaptability and phenotypic stability. Agronomy Science and Biotechnology, 8, 1–15. https://doi.org/10.33158/ASB.r145.v8.2022
Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach. 2nd ed. New York: McGraw-Hill Book.
Tucak, M., Popović, S., Cupić, T., Krizmanić, G., Spanić, V., Simić, B., & Megalic, V. (2014). Agro-morphological and forage quality traits of selected alfalfa populations and their application in breeding. Turkish Journal of Field Crops, 19, 79-83. doi: 10.17557/tjfc.43607
Vasconcelos, E. S., Ferreira, R. P., Cruz, C. D., Moreira, A., Rassini, J. B., & Freitas, A. R. (2010). Estimativas de ganho genético por diferentes critérios de seleção em genótipos de alfafa. Ceres, 57, 205-210. https://doi.org/10.1590/S0034-737X2010000200011
Virtanen, P., Gommers, R., Oliphant, M., Reddy, T., Cournapeau, E., & Peterson, P. (2020). "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". Nature Methods, 17, 261–272.
Xavier, L. H., & Dias, C. T. S. (2001). Acurácia do modelo univariado para análise de medidas repetidas por simulação multidimensional. Scientia Agricola, 58, 241-250. https://doi.org/10.1590/S0103-90162001000200005.
Copyright (c) 2023 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.