Enhancing the efficiency and sustainability of foliar fertilization in agriculture

  • Rafael Dal Bosco Ducatti Federal University of Technology – Solo Sagrado Agronegócios LTDA - Dugan Agribusiness LTDA https://orcid.org/0000-0001-8916-6557
  • Siumar Pedro Tironi Federal University of Fronteira Sul
Keywords: Biological organisms, sparing solubility, nutrient supplementation, soil moisture, biological and chemical interaction, combination of products

Abstract

When considering foliar fertilization, many questions arise about the differences between chelation, complexation, and their efficiency in supplying nutrients to plants. How efficiently are chelated and complexed nutrients absorbed by plants? Are chelates and complexes absorbed by plants? How do they perform in foliar and soil applications? Do they exhibit greater efficiency when compared to pure inorganic fertilizers? and, which ones are the best: soluble, sparingly soluble, or insoluble inorganic fertilizers? Although many people believe chelation and complexation are similar, some differences must be considered when choosing products to better supply plants with nutrients, avoid problems with tank mixtures, and enhance plant nutrition efficiency. The same is true for the vast variety of inorganic sources of fertilizers available for agriculture. They do not behave the same. For instance, inorganic water-soluble fertilizers such as nitrates, sulfates, and chlorides present different performances and should be chosen not only based on their nutrient concentration, availability, and price. All this information will assist farmers and technicians in better defining and selecting products to improve sustainability, efficiency, and achieve better results.

Downloads

Download data is not yet available.

References

Adhikari, B., Dhungana, S. K., Kim, I. D., & Shin, D. H. (2020). Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences, 19, 261-269. https://doi.org/10.1016/j.jssas.2019.02.001

Ahmad, F., Khaliq, A., Qiu, B., Sultan, M., & Ma, J. (2021). Advancements of spraying technology in agriculture. In: Ahmad, F., & Sultan, M. (eds.). Technology in Agriculture. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.98500

AGBM - Australian Government Bureau of Meteorology. (2004). Weather for pesticide spraying. Australia: Commonwealth of Australia, Bureau of Meteorology. http://www.bom.gov.au/info/leaflets/Pesticide-Spraying

Bahamonde, H. A., Pimentel, C., Lara, L. A., Bahamonde-Fernández, V., & Fernández, V. (2022). Foliar application of potassium salts to olive, with focus on accompanying anions. Plants, 12, 472. https://doi.org/10.3390/plants12030472

Boaretto, R. M., Hippler, F. W. R., Teixeira, L. A. J., Fornari, R. C., Quaggio, J. A., & Mattos Jr, D. (2023). Zinc fertilizers for citrus production: assessing nutrient supply via fertigation and foliar application. Plant and Soil. https://doi.org/10.1007/s11104-023-05969-w

Castro, S. A. Q., Kichey, T., Persson, D. P., & Schjoerring, J. K. (2022). Leaf Scorching following Foliar Fertilization of Wheat with Urea or Urea–Ammonium Nitrate Is Caused by Ammonium Toxicity. MDPI - Agronomy, 12, 1405. https://doi.org/10.3390/agronomy12061405

COMEX STATS – Ministry of Industry, Foreign Trade and Services. (2022). General Exports and Imports – Brazil. Brasília, DF: Ministério da Indústria, Comércio Exterior e Serviços. http://comexstat.mdic.gov.br/en/geral

Corrado, G., Lucini, L., Miras-Moreno, B., Chiaiese, P., Colla, G., De Pascale, S., & Rouphael, Y. (2020). Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. International Journal of Molecular Sciences, 21(7), 2482. https://doi.org/10.3390/ijms21072482

Derbalah, A., Abdelsalam, I., Behiry, S. I., Abdelkhalek, A., Abdelfatah, M., Ismail, S., & Elsharkawy, M. M. (2022). Copper oxide nanostructures as a potential method for control of zucchini yellow mosaic virus in squash. Pest Management Science, 78, 3587-3595. https://doi.org/10.1002/ps.7001

DCC - Dow Chemical Company. (2021). Chelation chemistry: General concepts of the chemistry of chelation. California: Dow Chemical Company. https://www.dow.com/content/dam/dcc/documents/en-us/app-tech-guide/113/113-01388-01-chelation-chemistry-general-concepts-of-the-chemistry-of-chelation

Du, W., Pan, Z.-Y., Hussain, S. B., Han, Z.-X., Pend, S.-A., & Liu, Y.-Z. (2020). Foliar supplied boron can be transported to roots as a boron-sucrose complex via phloem in citrus trees. Frontiers in Plant Science, 11, 00250. https://doi.org/10.3389/fpls.2020.00250

Evstatiev, R., Cervenka, A., Austerlitz, T., Deim, G., Baumgartner, M., Beer, A., Krnjic, A., Gmainer, C., Lang, M., Frick, A., Schachner, H., Khare, V., & Gasche, C. (2021). The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Scientific Reports, 11, 5188. https://doi.org/10.1038/s41598-021-84571-5

Fageria, N. K., Barbosa Filho, M. P., Moreira, A., & Guimarães, M. (2009). Foliar fertilization of crops. Journal of Plant Nutrition, 32, 1044-1064. https://doi.org/10.1080/01904160902872826

Fernández, V., Sotiropoulos, T., & Brown, P. (2013). Foliar fertilization. Scientific principles and field practices. Paris, France: International Fertilizer Industry Association (IFA). .

Franco, D., Goes, A., & Pereira, F. D. (2020). Sources and concentrations of cupric fungicides for the control of citrus black spot. Revista Caatinga, 33, 01-08. http://dx.doi.org/10.1590/1983-21252020v33n101rc

Fu, X.-Z., Xing, F., Cao, L., Chun, C.-P., Ling, L.-L., Jiang, C.-L., & Peng, L.-Z. (2016). Effects of foliar application of various zinc fertilizers with organosilicone on correcting citrus zinc deficiency. HortScience, 5, 422-426. https://doi.org/10.21273/HORTSCI.51.4.422

Führ, F., & Sauerbeck, D. (1967). The uptake of colloidal organic substances by plant roots as shown by experiments with 14C-labbeled humus compounds. Kernforschungsanlage Jülich, 490.

Gaige, A. R., Rowe, B., & Jurin, V. (2020). Assessment of efficiency of nutrient uptake of different sources of Zn, Mn, Cu and B in Zea mays. Agriculture, 10, 247. https://doi.org/10.3390/agriculture10060247

Gazziero, D. L. P. (2015). Mixture of pesticides in tank, in Brazilian farms. Planta Daninha, 33, 83-92. https://doi.org/10.1590/S0100-83582015000100010

Geilfus, C. M. (2018). Chloride: from nutrient to toxicant. Plant and Cell Physiology, 59, 877-886. https://doi.org/10.1093/pcp/pcy071

Guedes, E. M. S. (2012). Avaliação de fontes, absorção foliar e translocação de zinco (68Zn) em laranjeiras. PhD Thesis. Piracicaba, SP: Escola Superior de Agricultura “Luiz de Queiroz” – Universidade de São Paulo.

Hasanuzzaman, M., & Fujita, M. (2022). Plant responses and tolerance to salt stress: physiological and molecular interventions. International Journal of Molecular Science, 23, 4810. https://doi.org/10.3390/ijms23094810

Havlin, J. L., Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (2014). Soil fertility and fertilizers: An introduction to nutrient management. (8th ed.). New Jersey, USA: Prentice Hall.

Hippler, F. W. R., Boaretto, R. M., Quaggio, J. A., Azevedo, R. A., & Mattos, J. D. (2015). Towards soil management with Zn and Mn: estimates of fertilisation efficacy of Citrus trees. Annals of Applied Biology, 166, 484-495. https://doi.org/10.1111/aab.12197

IHCP - Institute for Health and Consumer Protection. European Chemicals Bureau. Edetic Acid (EDTA): Summary Risk Assessment Report. Germany: European Communities. https://echa.europa.eu/documents/10162/5ed7db13-e932-4999-8514-378ce88ca51f

Jacob, R. H., Afify, A., Shanab, S. M., & Shalaby, E. A. (2022). Chelated amino acids: biomass sources, preparation, properties and biological activities. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02333-3

Jacobs, D. F., & Timmer, V. R. (2005). Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New Forests, 30, 147-166. https://doi.org/10.1007/s11056-005-6572-z

Jeppsen, R. (1999). Advantages of Metal Amino Acid Chelates in Foliar Absorption. Proc. Albion’s International Conference on Plant Nutrition, Balchem Plant Nutrition, 16-28.

Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. (2021). Phosphorus transformation in soils following co-application of charcoal and wood ash. MDPI - Agronomy, 11, 2010. https://doi.org/10.3390/agronomy11102010

Macedo, L. O., Mattos Júnior, D. Jacobassi, R., Hippler, F. W. R., Quaggio, J. A., & Boaretto, R. M. (2021). Efficiency of foliar application of sparingly sources of boron and zinc in citrus. Scientia Agricola, 78, e20180387. https://doi.org/10.1590/1678-992X-2018-0387

Machado, B. A., Gomes, M. H. F., Almeida, E., Otto, R., Kamogawa, M. Y., & Carvalho, H. W. P. (2020). Understanding the chemistry of manganese fertilizers and glyphosate mixtures by using synchrotron X-ray spectrometry. SN Applied Science, 2, 1837. https://doi.org/10.1007/s42452-020-03632-y

Majaron, V. F., Silva, M. G., Bortoletto-Santos, R., Klaic, R., Ribeiro, S. J. L., Polito, W. L., Bevilaqua, D., Farinas, C. S., & Ribeiro, C. (2022). Bioactive Material with Microorganisms can Enhance the Micronutrients Solubilization and Sulfate Availability from Low Reactive Sources: Insight for Application as Coating Fertilizer Granules. Journal of Polymers and the Environment, 30, 2602-2613. https://doi.org/10.1007/s10924-022-02380-x

Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. (3rd ed.). United States of America: Elsevier, Academic Press

Mohanapriya, S., Senthilkumar, P., Sivakumar, S., Dineshkumar, M., & Subbhuraam, C. V. (2006). Effects of Copper Sulfate and Copper Nitrate in Aquatic Medium on the Restoration Potential and Accumulation of Copper in Stem Cuttings of the Terrestrial Medicinal Plant, Portulaca Oleracea Linn. Environmental Monitoring and Assessment, 121, 233-244. https://doi.org/10.1007/s10661-005-9117-1

Montanha, G. S., Rodrigues, E. S., Romeu, S. L. Z., Almeida, E., Reis, A. R., Lavres, Jr. J., & Carvalho, H. W. P. (2020). Zinc uptake from ZnSO4 (aq) and Zn-EDTA (aq) and its root-to-shoot transport in soybean plants (Glycine max) probed by time-resolved in vivo X-ray spectroscopy. Plant Science, 292, 110370. https://doi.org/10.1016/j.plantsci.2019.110370

Morgan, G. T., & Drew, H. D. K. (1920). Researches on residual affinity and co-ordination. Part II – Acetylacetones of selenium and tellurium. Journal of Chemical Society, Transactions, 117, 1456-1465. https://doi.org/10.1039/CT9201701456

Navarro, J. M., Garrido, C., Carvajal, M., & Martinez, V. (2002). Yield and fruit quality of pepper plants under sulphate and chloride salinity. Journal of Horticultural Science & Biotechnology, 77, 52-57. https://doi.org/10.1080/14620316.2002.11511456

Neocleous, D., Nikolaou, G., Ntatsi, G., & Savvas, D. (2020). Impact of chelated or inorganic manganese and zinc applications in closed hydroponic bean crops on growth, yield, photosynthesis, and nutrient uptake. MPDI - Agronomy, 10, 881. https://doi.org/10.3390/agronomy10060881

Nielsen, C. M., Steele, K. D., Forster, W. A., & Zabkiewicz, J. A. (2005). Influence of dose and molar mass on foliar mass uptake of surfactant. New Zeland Plant Protection, 58, 174-178. https://doi.org/10.30843/nzpp.2005.58.4243

Nowack, B., & Briesen, J. M. (2005). Biogeochemistry of chelating agents: No. 910. United Kingdom: Oxford University Press Inc.

Oviedo, C., & Rodríguez, J. (2003). EDTA: the chelating agent under environmental scrutiny. Química Nova, 26, 901-905. https://doi.org/10.1590/S0100-40422003000600020

Pierce, C. A. E., McBeath, T. M., Priest, C., & McLaughlin, M. J. (2019). The timing of application and inclusion of a surfactant are important for absorption and translocation of foliar phosphoric acid by wheat leaves. Frontiers in Plant Science, 10, 01532. https://doi.org/10.3389/fpls.2019.01532

Pissarra, J. (2018). Epiderme foliar, estomas e tricomas. Canhoto, J. M. (Ed.). Porto: Casa das Ciências. https://www.casadasciencias.org/imagem/8831

Prochnow, L. I., Casarin, V., & Stipp, S. R. (2010). Boas Práticas para Uso eficiente de Fertilizantes. vol. 2. Piracibaba, SP: International Plant Nutrition Institute (IPNI).

Reidies, A. H. (2000). Manganese Compounds. Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons. https://doi.org/10.1002/14356007.a16_123

Rodrígues, M., & Zea, H. (2015). Assessment of the acidulation of magnesium oxide for the production of magnesium nitrate liquid fertilizer. International Journal of Chemical Science, 13, 336-344.

Salisbury, F. B., & Ross, C. W. (1992). Plant Physiology. Fourth Edition. California: Wadsworth Publishing Company.

Schönherr, J. (2002). Foliar nutrition using inorganic salts: Laws of cuticular penetration. Acta Horticulturae, 594, 77-84. https://doi.org/10.17660/ActaHortic.2002.594.5

Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57, 2471-2491. https://doi.org/10.093/jxb/erj217

Schreiber, L., & Schönherr, J. (2009). Water and Solute Permeability of Plant Cuticles: Measurement and data analysis. Germany: Springer.

Sekhon, B. S. (2003). Chelates for micronutrient nutrition among crops. Resonance, 8, 46-53. https://doi.org/10.1007/BF02834402

Sheikh, M. H. E., Zaeid, N. S., & Khafagy, S. A. (2007). Improving Washington navel orange trees productivity by foliar spray with calcium chloride, calcium nitrate and calcium chelate. Catrina, 2: 45-49.

Silva, A. R. L., Cavalcante, I. H. L., Silva, M. A., Paiva Neto, V. B., Amariz, R. A., & Amorim, L. Y. A. (2022). Does the sunblock alleviate abiotic stress in mango trees grown in the tropical semiarid? Folia Horticulturae, 34, 211-221. https://doi.org/10.2478/fhort-2022-0016

Sokhanvarian, K. (2012). Thermal stability of various chelates that are used in the oilfield. Thesis (Master of Science). Texas A&M University. Available at: http://oaktrust.library.tamu.edu/bitstream/1969.1/148141/1/sokhanvarian-thesis

Song, Y., Huang, Q., Huang, G., Liu, M., Cao, L., Li, F., Zhao, P., & Cao, C. (2022). The effects of adjuvants on the wetting and deposition of insecticide solutions on hydrophobic wheat leaves. MDPI - Agronomy, 12, 2148. https://doi.org/10.3390/agronomy12092148

Sousa, V. F., Marouelli, W. A., Coelho, E. F., Pinto, J. M., & Filho, M. A. C. (2011). Irrigação e fertirrigação em fruteiras e hortaliças. Brasilia, DF, Brazil: EMBRAPA.

Stacey, S. P. (2007). New micronutrient fertilizers for alkaline soils. Thesis of Ph.D. The University of Adelaide.

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2014). Plant physiology & development. (6th ed.). Massachusetts, USA: Sinauer Associates, Inc.

Teixeira, L. A. J., Quaggio, J. A., Cantarella, H., & Mellis, E. V. (2011). Potassium fertilization for pineapple: effects on plant growth and fruit yield. Revista Brasileira de Fruticultura, 33, 618-626. https://doi.org/10.1590/S0100-29452011000200035

Tewari, G. S., Pareek, N., Pachauri, S. P., & Pandey, S. (2018). Impact of chelation/complexation phenomenon on soil environment. International Journal of Agriculture Science, 10, 7314-7316.

Thabet, A. F., Boraei, H. A., Galal, A. O., El-Samahy, M. F. M., Mousa, K. M., Zhang, Y. Z., Tuda, M., Helmy, E. A., Wen, J., & Nozaki, T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific Reports: 11, 14484. https://doi.org/10.1038/s41598-021-93518-9

Turhan, A., & Özmen, N. (2021). Influence of chlorine on growth, fruit yield and quality parameters of processing pepper. KSÜ Tarim ve Doga Derg, 24, 1139-1144. https://doi.org/10.18016/ksutarimdoga.vi.846945

WITS - World Integrated Trade Solution. (2021). Trade Statistics by Product - Exports by country in 2021. https://wits.worldbank.org/trade/country-byhs6product.aspx?lang=en#void

Xiao, J., Zou, K., Ding, W., Peng, Y., & Chen, T. (2020). Extraction of leaf and zinc from a rotary kiln oxidizing roasting cinder. Metals, 10, 465. https://doi.org/10.3390/met10040465

Xu, M., Liu, M., Ma, Q., & Wu, L. (2022). Glycine-chelated zinc lowered foliar phytotoxicity than excess zinc sulfate and improved zinc use efficiency in two sweet potato cultivars. Scientia Horticulturae, 295, 110880. https://doi.org/10.1016/j.scienta.2022.110880

Zandonadi, C. H. S., Burkhardt, J., Hunsche, M., & Cunha, J. P. A. R. (2018). Tank-mix of chlorantraniliprole and manganese foliar fertilizers: Impact on rheological characteristics, deposit properties and cuticular penetration. Crop Protection, 106, 50-57. https://doi.org/10.1016/j.cropro.2017.12.011

Zehler, E., & Kreipe, H. (1981). Potassium Sulphate and Potassium Chloride: Their influence on the yield and quality of cultivated plants. Switzerland: International Potash Institute.

Zimbovskaya, M. M., Polyakov, A. Y., Volkov, D. S., Kulikova, N. A., Lebedev, V. A., Pankratov, D. A., Konstantinov, A. I., Parfenova, A. M., Zhilkibaev, O. T., & Perminova, I. V. (2020). Foliar application of humic-stabilized nanoferrihydrite resulted in an increase in the content of iron in wheat leaves. MDPI - Agronomy, 10, 1891. https://doi.org/10.3390/agronomy10121891

Published
2023-12-20
How to Cite
Ducatti, R. D. B., & Tironi, S. P. (2023). Enhancing the efficiency and sustainability of foliar fertilization in agriculture. Agronomy Science and Biotechnology, 10, 1-21. https://doi.org/10.33158/ASB.r200.v10.2024