Contrast between Brazil and other countries in nutraceutical components of Camelina sativa grains

  • Leonardo Cesar Pradebon Regional University of Northwestern Rio Grande do Sul
  • Ivan Ricardo Carvalho Regional University of Northwestern Rio Grande do Sul
  • Murilo Vieira Loro Federal University of Santa Maria
  • Christiane Fatima Colet Regional University of Northwestern Rio Grande do Sul
  • José Antonio Gonzalez Silva Regional University of Northwestern Rio Grande do Sul
  • Jessica Fernanda Hoffmann Researcher University of Vale do Rio dos Sinos
  • Stefany Cristina Foscarini Researcher University of Vale do Rio dos Sinos
  • João Elias Ziembowicz Nativu's Bird Food
Keywords: Nutritional profile, variability, biodiesel, protein, low fertility, lipid metabolism, plant breeding

Abstract

Camelina sativa, also known as false flax, is a species can be cultivated in a variety of climates, seasons and soil types, due to its short development cycle and tolerance to drought and low temperatures. In the composition of its grains, it presents a high amount of oil and rich in unsaturated fatty acids. In view of this, the objective of this work was to compare the composition of the nutraceutical components of Camelina sativa L. grains cultivated in Brazil and countries in Europe, Asia and North America. About 20 kg of grains were collected and then a homogeneous sample of 1kg of grains was cleaned to perform the centesimal composition of the grains. Afterwards, a search for information was carried out on the cultivation of Camelina sativa L. in other countries and the collection of information on the centesimal composition of the grains of this oleaginous plant. The collection of information was based on obtaining published scientific articles on the nutraceutical composition of Camelina sativa in regions of Europe, Asia and North America. Brazil presents a promising environment for the cultivation of Camelina sativa, with superior performance for the content of stearic acid, linoleic acid, linolenic acid and palmitic acid. The fatty acids profile decreased with the reduction of the minimum air temperature. The mineral material, palmitic acid and linolenic acid are positively correlated.

Downloads

Download data is not yet available.

References

Barriuso, B., Astiasarán, I., & Ansorena, D. (2013). A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European Food Research and Technology, 236, 1-15. DOI: 10.1007/s00217-012-1866-9

Bester, A. U., Argenta, C., Lucchese, O., Carvalho, I. R., Bianchi, C. A. M., Schiavo, J., Bubans, V., Sfalcin, I. C., & Loro, M. V. (2024). Environmental stimulus in lettuce genotype in agroecological cultivation system. Agronomy Science and Biotechnology, 10, 1-10 https://doi.org/10.33158/ASB.r197.v10.2024

Belayneh, H. D., Wehling, R. L., Zhang, Y., & Ciftci, O. N. (2017). Development of omega-3-rich Camelina sativa seed oil emulsions. Food Science & Nutrition, 6(2), 440-449. DOI: 10.1002/fsn3.572.

Belayneh, H. D., Wehling, R. L., Cahoon, E., & Ciftci, O. N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. The Journal of Supercritical Fluids, 104:153-159.

Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94: 690-710.

Borges, A. J., & Torres, E. A. (2017). Adaptabilidade da Camelina sativa e uso na produção de biodiesel - uma revisão. Revista Liberato, 17(28), 137-146.

Ciubota-Rosie, C., Ruiz, J. R., Ramón, M. J., & Pérez, A. (2013). Biodiesel from Camelina sativa: A comprehensive characterisation. Fuel, 105: 572-577.

Ducatti, R. D. B., & Tironi, S. P. (2023). Enhancing the efficiency and sustainability of foliar fertilization in agriculture. Agronomy Science and Biotechnology, 10, 1-21. https://doi.org/10.33158/ASB.r200.v10.2024

Fadda, A., Sanna, D., Sakar, E., Gharby, S., Mulas, M., Medda, S., Yesilcubuk, NS., Karaca, A. K., Gozukirmizi, C. K., Lucarini, M., Boccia, G. L., Diaconeasa, Z., & Burazzo, A. (2022). Innovative and sustainable technologies to enhance the oxidative stability of vegetable oils. Sustainability, 14(2), 1-29.

Furlan, R. D. P., Carvalho, I. R., Loro, M. V., Hutra, D. J., Pradebon, L. C., Huth, C., Silva, J. A. G., Uhde, L, T., & Almeida, H. C. F. (2022). Edaphoclimatic variables in determining flaxseed yield. Agronomy Science and Biotechnology, 8, 1-12 https://doi.org/10.33158/ASB.r160.v8. 2022

Francis, A., & Warwick, S. I. (2009). The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Canadian Journal of Plant Science, 89, 791–810. doi: 10.4141/CJPS08185.

Fröhlich, A., & Rice, B. (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Crops and Products, 21(1), 25-31.

Ghidoli, M., Ponzoni, E., Araniti, F., Miglio, D., & Pilu, R. (2023). Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. Plants, 12(3), 570. DOI: 10.3390/plants12030570.

Gugel, R. K., & Falk, K. C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86(4), 1047-1058.

Hailemariam, M. (2023). The effects of a few important gene families on sorghum agronomic traits. Agronomy Science and Biotechnology, 9, 1-11. https://doi.org/10.33158/ASB.r163.v9.2023

Hergert, G. W., Margheim, J. F., Pavlista, A. D., Martin, D. L., Isbell, T. A., & Supalla, R. J. (2016). Irrigation response and water productivity of deficit to fully irrigated spring camelina. Agricultural Water Management, 177, 46-53.

Ibrahim, F. E. L., & Habbasha, E. S. (2015). Chemical Composition, Medicinal Impacts and Cultivation of Camelina (Camelina Sativa): Review. International Journal of Pharm Tech Research, 8,114–122.

Kasiga, T., Karki, B., Croat, J., Kaur, J., Gibbons, W. R., Muthukumarappan, K., & Brown, M. I. (2020). Process effects on carinata Brassica carinata and camelina Camelina sativa seed meal compositions and diet palatability in Rainbow Trout Oncorhynchus mykiss. Animal Feed Science and Technology, 267, 114578.

Katar, D. (2013). Determination of fatty acid composition on different false flax (Camelina sativa (L.) Crantz) genotypes under Ankara ecological conditions. Turkish Journal of Field Crops, 18(1), 66-72.

Kon’kova, N. G., Shelenga, T. V., Gridnev, G. A., Dubovskaya, A. G., & Malyshev, L. (2021). Stability and variability of Camelina sativa (L.) crantz economically valuable traits in various eco-geographical conditions of the Russian federation. Agronomy, 11(2), 1-13.

Krzyżaniak, M., Stolarski, M. J., Tworkowski, J., Puttick, D., Eynck, C., Zaluski, D., & Kwiatkowski, J. (2019). Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products, 138, 111443.

Mendiburu, F. (2021). agricolae: Statistical Procedures for Agricultural Research_. R package version 1.3-5, 2021. <https://CRAN.R-project.org/package=agricolae>

Morais, A. L., Christiani, G., Cestari, A., & Flumignan, D. L. (2012). Caracterização da identidade e controle da qualidade de óleo vegetal, matéria-prima para produção de biodiesel. Ribeirão Preto, SP: Agroenergia.

Moser, B. R., & Vaughn, S. F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101(2), 646-653.

Moser, B. R. (2010). Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technology, 22, 270-273.

NASA - National Aeronautics and Space Administration. (2022). NASA Prediction of Worldwide Energy Resources. Available in: https://power.larc.nasa.gov/

Neupane, D., Lohaus, R. H., Solomon, J. K. Q., & Cushman, J. C. (2022). Realizing the potential of Camelina sativa as a bioenergy crop for a changing global climate. Plants, 11(6), 772.

Olivoto, T., & Lúcio, A. D. (2020). Metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution. 11, 783-789. DOI: http://doi.org/10.1111/2041-210X.13384

Orczewska-Dudek, S., Pietras, M., Puchała, M., & Nowak, J. (2020). Oil and camelina cake as sources of polyunsaturated fatty acids in the diets of laying hens: effect on hen performance, fatty acid profile of yolk lipids, and egg sensory quality. Annals of Animal Science, 20,1365–1377.

Peiretti, P. G., Mussa, P. P., Prola, L., & Meineri, G. (2007). Use of different levels of false flax (Camelina sativa L.) seed in diets for fattening rabbits. Livestock Science, 107(2-3), 192-198.

Quezada, N., & Cherian, G. (2012). Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. European Journal of Lipid Science and Technology, 114(8), 974-982.

R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available in: <https://www.R-project.org> Accessed in February 27, 2023.

Raczyk, M., Popis, E., Kruszewski, B., Ratusz, K., & Rudzińska, M. (2016). Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold‐pressed oils from retail outlets. European Journal of Lipid Science and Technology, 118(5), 834-839.

Raziei, Z., Kahrizi, D., & Rostami-Ahmadvandi, H. (2018). Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 64(5), 91-96.

Resende, J. C., Matsuo, E., Alves, G. F., Bomtempo, G. L., Nascimento, M., & Ferreira, S. C. (2023). Adaptability and phenotypic stability of soybean genotypes regarding epicotyl length using artificial neural network and non-parametric test. Agronomy Science and Biotechnology, 9, 1-14 https://doi.org/10.33158/ASB.r190.v9.2023

Sainger, M., Jaiwal, A., Sainger, P. A., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. (2017). Advances in Genetic Improvement of Camelina sativa for Biofuel and Industrial Bio-Products. Renewable and Sustainable Energy Reviews, 68, 623-637.

Séguin-Swartz, G., Eynck, C., Gugel, R. K., Strelkov, S. E., Olivier, C. Y., Li, J. L., Klein-Gebbinck, H., Borhan, H., Caldwell, C. D., & Falk, K. C. (2009). Diseases of Camelina sativa (false flax). Canadian Journal of Plant Pathology, 31, 375–386.

Toncea, I., Ghilvacs, M., & Prisecaru, T. (2013). The seed’s and oil composition of Camelia–first Romanian cultivar of camelina (Camelina sativa, L. Crantz). Romanian Biotechnological Letters, 18(5), 8594-8602.

Tura, M., Mandrioli, M., Valli, E., & Toschi, T. G. (2023). Quality indexes and composition of 13 commercial hemp seed oils. Journal of Food Composition and Analysis, 117, 105112.

Vollmann, J., & Eynck, C. (2015). Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal,10, 525-535.

Walia, M. K., Wells, M. S., Cubins, J., Wyse, J., Gardner, R. D., Forcella, F., & Gesch, R. (2018). Winter camelina seed yield and quality responses to harvest time. Industrial Crops and Products, 124, 765-775.

Waraich, E. A., Ahmed, Z., Ahmad, R., Ashraf, M. Y., Naeem, M. S., & Rengel, Z. (2013). ‘Camelina sativa’, a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science. 7, 1551–1559.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org

Wu, X., & Leung, D. Y. C. (2011). Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 88(11), 3615–3624.

Yang, J., Caldwell, C., Corscadden, K., He, Q. S., & Li, J. (2016). An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Industrial Crops and Products, 81, 162-168.

Yuan, L., & Li, R. (2020). Metabolic engineering a model oilseed camelina sativa for the sustainable production of high-value designed oils. Frontiers in Plant Science, 11, 11.

Załuski, D., Tworkowski, J., Krzyżaniak, M., Stolarski, M. J., & Kwiatkowski, J. (2020). The characterization of 10 spring camelina genotypes grown in environmental conditions in North-Eastern Poland. Agronomy, 10(1), 64.

Zubr, J. (1997). Oil-Seed Crop: Camelina Sativa. Industrial Crops and Products, 6, 113–119. DOI: 10.1016/S0926-6690(96)00203-8.

Zubr, J. (2010). Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutrition & Food Science, 40(5), 523-531.

Zubr, J. (2003). Dietary fatty acids and amino acids of Camelina sativa seed. Journal of Food Quality, 26(6), 451-462.

Zubr, J., & Matthäus, B. (2002). Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Industrial Crops and Products. 15, 155-162.

Published
2024-05-11
How to Cite
Pradebon, L. C., Carvalho, I. R., Loro, M. V., Colet, C. F., Silva, J. A. G., Hoffmann, J. F., Foscarini, S. C., & Ziembowicz, J. E. (2024). Contrast between Brazil and other countries in nutraceutical components of Camelina sativa grains . Agronomy Science and Biotechnology, 10, 1-14. https://doi.org/10.33158/ASB.r201.v10.2024