IAA production and phosphate solubilization performed by native rhizobacteria in western Paraná
Abstract
In search for a more sustainable agriculture, the use of microorganisms as a technology is increasingly being used by agriculture throughout the world. This is due to the fact that it minimizes the use of agricultural supplies reducing environmental costs and impacts, based on the beneficial and natural relationships between edaphic organisms and cultivated plants. The rhizobacteria habitat in the soil establishes biochemical relationships with the plants acting as plant growth promoters (PGPR). Many of these bacteria are producers of phytohormones and enzymatic compounds with the capacity to provide important nutrients for plants. In this context, the present work aimed to quantify the potential of indole-3-acetic acid (IAA) production and the phosphate solubilization of rhizobacteria from Western Paraná. Isolates grown in DYGS medium plus tryptophan were quantified by colorimetry for the production of IAA. Iron phosphate solubilization was carried out by inoculation in modified Pikovskaya medium (PKV) and quantified by colorimetry. The results were evaluated by the Scott-Knott test at 5% using the SASM-Agri program. The highest IAA production was observed with the addition of tryptophan to Erwinia (219); Enterobacter (302) and Salmonella (57). Isolates Falsibacillus (438) and 505 showed higher efficiency in the iron phosphate solubilization. Isolates Enterobacter (130), 438 and Enterobacter (151) were highlighted in both tests, being characterized as a great potential for use in biotechnological products.Downloads
References
Assumpção LC, Lacava PT, Dias ACF, De Azevedo JL and Menten JO (2010) Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja. Pesquisa Agropecuária Brasileira 44: 503-510.
Araújo FF and Guerreiro RT (2010) Bioprospecção de isolados de Bacillus promotores de crescimento de milho cultivado em solo autoclavado e natural. Ciência e Agrotecnologia 34: 837-844.
Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia LMP and Vargas LK (2013) Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology 63: 15-22.
Balota EL (2017) Importância da Microbiota do Solo Balota EL Manejo e Qualidade Biológica do Solo. Mecenas, Londrina, p. 57-84.
Bar T and Okon Y (1993) Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasiliense Sp7. Canadian Journal of Microbiology 39: 81-86.
Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI and Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology 4: 94-104.
Bhattacharyya PN and Jha DK (2011) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of microbiology and biotechnology 28: 1327-1350.
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Brzezinski CR, Zucareli C, Henning FA, Abati J, Prando AM and Henning AA (2014) Nitrogênio e inoculação com Azospirillum na qualidade fisiológica e sanitária de sementes de trigo. Revista de Ciências Agrárias/Amazonian Journal of Agricultura land Environmental Sciences 57: 257-265.
Canteri MG, Althaus RA, Virgens Filho JS, Giglioti EA and Godoy CV (2001) SASM - Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott - Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação 1: 18-24.
Chaiharn M and Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria an imedat improving plant growth. Current microbiology 62: 173-181.
Chaves DP, Zucareli C and Oliveira Junior A (2013) Fontes de fósforo associadas à inoculação com Pseudomonas fluorescens no desenvolvimento e produtividade do milho. Semina: Ciências Agrárias 34: 57-42.
Dartora J, Marini D, Guimarães VF, Pauletti DR and Sander G (2013) Germinação de sementes e desenvolvimento inicial de plântulas de milho e trigo inoculadas com estirpes de Azospirillum brasilense e Herbaspirillum seropedicae. Global Science and Technology 6: 3.
Egamberdieva D, Shrivastava S and Varma A (2015) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. SoilBiology 42: 1-16.
Florentino LA (2017) Inoculação de bactérias produtoras de ácido 3-indol acético em plantas de alface (Lactuca sativa L.). Revista Colombiana de Ciências Hortícolas 11: 89-96.
Guang-Can TAO, Shu-Jun TIAN, Miao-Ying CAI and Guang-Huii XIE (2008) Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils. Pedosphere 18: 515-523.
Glick BR (2012) Plant Growth �?? Promoting Bacteria: Mechanisms and Applications. Scientific, p.1-16.
Kaschuk G, Alberton O and Hungria M (2010) Quantifying effects of diferente agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant and Soil 338: 467-481.
Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition 13: 638-649.
Murphy J and Riley JP (1962) A modified single solution method for the determination no phosphate in natural waters. Analytica chimica acta 27: 31-36.
Panda B, Rahman H and Panda J (2016) Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere 2: 62-71.
Patino-Torres CO and Sanclemente-Reyes OE (2014) Los microorganismos solubilizadores de fósforo (MSF): uma alternativa biotecnológica para uma agricultura sustentável. Entramado 10: 288-297.
Pedrinho EAN, Galdiano Junior RF, Campanharo JC, Alves LMC and Lemos EGDM (2010) Identificação e avaliação de rizobactérias isoladas de raízes de milho. Bragantia 69: 905-911.
Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370.
Prasanna A, Deepa V, Murthy PB, Deecaraman M, Sridhar R and Dhandapani P (2011) Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from Southern India. International Journal of Soil Science 6:134-141.
Rodrigues LFOS, Guimarães VF, Silva MB, Pinto Junior AS, Klein J and Costa ACPR (2013) Características agronômicas do trigo em função de Azospirillum brasilense, ácidos húmicos e nitrogênio em casa de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental 18: 31-37.
Sano EE, Santos CCM, Silva EM and Chaves JM (2011) Fronteira agrícola do oeste baiano: considerações sobre os aspectos temporais e ambientais. Geociências 30: 479-489.
Sarwar M and Kremer RJ (1995) Determination of bacterially derived auxins using a microplate. Method. Letters in Applied Microbiology 20: 202-205.
Sommers E and Vanderleyden J (2004) Rhizosphere bacterial signaling: A love parade beneath our feet. Critical Reviews Microbiology 30(4):205-240.
Souza R, Mendonça EAF, Biz AR and Soares MA (2018) Potencial Agronômico de Bactérias Endofíticas de Echinodorus scaber Rataj (macrophyllus) em Plântulas de Soja. Ensaios e Ciência: C. Biológicas, Agrárias e da Saúde 21: 187-193.
Taiz L and Zeiger E (2004) Fisiologia Vegetal. 3ª ed. Artmerd Editora, Porto Alegre, 719p.
Tozlu E, Karagoz K, Babagil GE, Dizikisa T and Kotan R (2012) Effect of Some Plant Growth Promoting Bacteria on Yield, Yield Components of Dry Bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk �?niversitesi Ziraat Fakultesi Dergisi 43: 101-106.
Copyright (c) 2020 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.