Efficiency and responsiveness of using phosphorus and molecular diversity among soybean cultivars

Keywords: Glycine max, absorption, microsatellites, Molecular markers, soybean yield, soybean breeding

Abstract

Plants use two strategies for their development under nutrient limiting conditions that are the efficiency increase of usage and acquisition. In this situation, the use of efficient genotypes for acquisition and utilization of phosphorus (P) may be a complementary solution to minimize possible problems related to this nutrient in Brazilian soils. Thus, this study aimed to verify the efficiency, response, and cultivar molecular diversity concerning the phosphorus availability variations. The experiment was carried out in a greenhouse using twelve soybean cultivars, such as W 711; MSoy 7211; Anta 82; TMG 1176; MSoy 7908; TMG 132; Valiosa; MSoy 8766; BRS 271; MSoy 9144; Tracajá; and Candeia. The seeds of each cultivar were sown on soil with two doses: 30 and 300 mg P per soil kg. The efficiency indexes, response to P, and molecular analyzes were evaluated. The most efficient cultivars in the use of P and responsive to the increase of P were TMG 1176, TMG 132, Valiosa, and MSoy 9144.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

Author Biographies

Marcos Morais Soares, Centro Universitário Luterano de Palmas

Departamento de Agronomia

Tuneo Sediyama, Universidade Federal de Viçosa

Departamento de Agronomia

Éder Matsuo, Universidade Federal de Viçosa

Laboratório de Bioestatística

References

Araújo, A. P. (2000). Eficiência vegetal de absorção e utilização de fósforo, com especial referência ao feijoeiro. In C. E. G. R. Novais, R.F., Alvarez, V., V.H., Schaefer (Ed.), Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo. Retrieved from https://www.scielo.br/scielo.php?script=sci_nlinks&ref=000080&pid=S0006-8705200500040001400001&lng=pt

Bernardeli, A., Borem, A., Lorenzoni, R., Aguiar, R., Nayara, J., Silva, B., �?� Costa, M. D. L. (2020). SNP marker association for incrementing soybean seed protein content. Agronomy Science and Biotechnology, 6(2015), 1�??11. https://doi.org/10.33158/ASB.r107.v6.2020

Bortolotto, O. C., Pomari-Fernandes, A., Bueno, R. C. O. de F., Bueno, A. F., Cruz, Y. K. S., Sanzovo, A., & Ferreira, R. B. (2015). The use of soybean integrated pest management in Brazil: a review. Agronomy Science and Biotechnology, 1(1), 25. https://doi.org/10.33158/asb.2015v1i1p25

Camargos, T., Campos, N., Alves, G., Ferreira, S., & Matsuo, �?. (2019). The effect of soil volume, plant density and sowing depth on soybean seedlings characters. Agronomy Science and Biotechnology, 5(2), 47. https://doi.org/10.33158/asb.2019v5i2p47

Clarkson, D. T., Hawkesford, M. j. (1993). Molecular biological approaches to plant nutrition. Plant and Soil, 155/156, 21�??31. Retrieved from https://www.jstor.org/stable/42939259?seq=1

Craswell, E. T., Godwin, D. C. (1984). The efficiency of nitrogen fertilizers applied to cereals growing in different climates. Advances in Plant Nutrition, 1, 1�??55. Retrieved from https://books.google.com.br/books/about/Advances_in_Plant_Nutrition.html?id=nl7HAAAACAAJ&redir_esc=y

Cregan, P. B., Bhagwat, A .A., Akkaya, M. S., Rongwen, J. (1994). ) Microsatellite fingerprinting and mapping of soybean. Methods in Molecular and Cellular Biology, 5, 49�??61. Retrieved from https://www.ars.usda.gov/ARSUserFiles/1190/cregan94.pdf

Cruz, C. D. (2013). GENES - Software para análise de dados em estatística experimental e em genética quantitativa. Acta Scientiarum - Agronomy, 35(3), 271�??276. https://doi.org/10.4025/actasciagron.v35i3.21251

Diwan, N., & Cregan, P. B. (1997). Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. TAG Theoretical and Applied Genetics, 95(5-6), 723�??733. doi:10.1007/s00. TAG Theoretical and Applied Genetics, 95(5�??6), 723�??733. https://doi.org/10.1007/s001220050618

Fageria, N.D., Kluthcouski, J. (1980). Metodologia para avaliação das cultivares de arroz e feijão, para condições adversas de solo. Goiania: Embrapa-CNPAF, 21. Retrieved from https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAF/1832/1/circ_8.pdf

Fageria, N. K. (1992). Maximizing crop yields. New York: Marcel Dekker. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19920755740

Ferreira, M. E., Grattapaglia, D. (1998). Introducao ao uso de marcadores moleculares em analise genetica (3rd ed.). Brasilia: Embrapa Recursos Genéticos e Biotecnologia https://livimagens.sct.embrapa.br/amostras/00063810.pdf

Föhse, D., Claassen, N., & Jungk, A. (1988). Phosphorus efficiency of plants - I. External and internal P requirement and P uptake efficiency of different plant species. Plant and Soil, 110(1), 101�??109. https://doi.org/10.1007/BF02143545

Fox, R. H. (1978). Selection for phosphorus efficiency in corn. Communications in Soil Science and Plant Analysis, 9(1), 13�??37. https://doi.org/10.1080/00103627809366784

Fritsche-Neto, R. Borém, A. (2012). Plant Breeding for Abiotic Stress Tolerance. Berlin, Heidelberg: Springer. https://doi.org/DOI https://doi.org/10.1007/978-3-642-30553-5

Fu, Y. B., Peterson, G. W., & Morrison, M. J. (2007). Genetic diversity of Canadian soybean cultivars and exotic germplasm revealed by simple sequence repeat markers. Crop Science, 47(5), 1947�??1954. https://doi.org/10.2135/cropsci2006.12.0843

Gill, M. A., Salim, M., & Zia, M. S. (1992). Maize growth and uptake of phosphate and copper at different ambient phosphate concentrations. Soil Science and Plant Nutrition, 38(4), 631�??636. https://doi.org/10.1080/00380768.1992.10416692

Harada, A., Gonçalves, L. S. A., Kiihl, R. A. S., & Destro, D. (2015). Flowering under short days: juvenile period and inductive phase estimates in soybean genotypes. Agronomy Science and Biotechnology, 1(1), 10. https://doi.org/10.33158/asb.2015v1i1p10

Hiromoto, D. M.; Vello, N. A. (1986). The genetic base of Brazilian soybean (Glycine max (L.) Merrill) cultivars. Revista Brasileira de Genética, 9, 295�??906.

Hwang, T. Y., Gwak, B. S., Sung, J., & Kim, H. S. (2020). Genetic diversity patterns and discrimination of 172 korean soybean (Glycine max (L.) merrill) varieties based on SSR analysis. Agriculture (Switzerland), 10(3). https://doi.org/10.3390/agriculture10030077

Idury, R. M., & Cardon, L. R. (1997). A Simple Method for Automated Allele Binning in Microsatellite Markers. Genome Research, 7(11), 1104�??1109. https://doi.org/10.1101/gr.7.11.1104

Kujane, K., Sedibe, M. M., & Mofokeng, A. (2019). Genetic diversity analysis of soybean (Glycine max (L.) Merr.) genotypes making use of SSR markers. Australian Journal of Crop Science, 13(7), 1113�??1119. https://doi.org/10.21475/ajcs.19.13.07.p1638

Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98(4), 693�??713. https://doi.org/10.1093/aob/mcl114

Lynch, J. P., & Ho, M. D. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1�??2), 45�??56. https://doi.org/10.1007/s11104-004-1096-4

Machado, C. T. T., & Furlani, �?. M. C. (2004). Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize. Scientia Agricola, 61(1), 69�??76. https://doi.org/10.1590/s0103-90162004000100012

Moll, R. H., Kamprath, E. J., & Jackson, W. A. (1982). Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization 1 . Agronomy Journal, 74(3), 562�??564. https://doi.org/10.2134/agronj1982.00021962007400030037x

Novais, R.F., & Smyth, T.J. (1999) Fósforo em solo e planta em condições tropicais. Viçosa: Editora UFV. http://www.ipni.net/publication/ia-brasil.nsf/0/241DADE2FCFB2F1783257B8D004C15FF/$FILE/page10-11-87.pdf

Oda, M. D. C., Sediyama, T., Matsuo, �?., Cruz, C. D., Barros, E. G, & Ferreira, M. F. S. (2015). Phenotypic and molecular traits diversity in soybean launched in forty years of genetic breeding. Agronomy Science and Biotechnology, 1(1), 1�??9. https://doi.org/10.33158/asb.2015v1i1p1

Oliveira, D., Furmigare, N. S., & Peluzio, J. M. (2019). Divergência genética em linhagens de soja visando a produção de biodiesel no Estado do Tocantins. Magistra, 30, 113�??122. Retrieved from https://magistraonline.ufrb.edu.br/index.php/magistra/article/view/642

Rausch, C., & Bucher, M. (2002). Molecular mechanisms of phosphate transport in plants. Planta, 216(1), 23�??37. https://doi.org/10.1007/s00425-002-0921-3

Rohlf, F. J. (2000). NTSYSpc: numerical taxonomy and multivariate analysis system. New York: Exeter Software. https://www.scienceopen.com/document?vid=8071739f-efd0-4990-9970-47e831f11f8b

Sahrawat, K. L., & Sika, M. (2002). Direct and residual phosphorus effects on soil test values and their relationships with grain yield and phosphorus uptake of upland rice on an ultisol. Communications in Soil Science and Plant Analysis, 33(3�??4), 321�??332. https://doi.org/10.1081/CSS-120002748

Samanfar, B., Cober, E. R., Charette, M., Tan, L. H., Bekele, W. A., Morrison, M. J., �?� Molnar, S. J. (2019). Genetic Analysis of High Protein Content in �??AC Proteus�?? Related Soybean Populations Using SSR, SNP, DArT and DArTseq Markers. Scientific Reports, 9(1), 1�??10. https://doi.org/10.1038/s41598-019-55862-9

Shenoy, V. V., & Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23(7�??8), 501�??513. https://doi.org/10.1016/j.biotechadv.2005.01.004

Silva, A. F., Sediyama, T., Matsuo, �?., Silva, F. C. S., Cruz, C. D., Borém, A., & Bezerra, A. R. G. (2017). Phenotypic and molecular diversity among soybean cultivars as a function of growing season. Agronomy Science and Biotechnology, 1(2), 52-61. https://doi.org/10.33158/ASB.2015v1i2p52

Soares, M. M., Silva, L. J., Oliveira, G. L., Sekita, M. C., & Dias, D. C. F. S. (2014). Endogenous level of phosphorous in soya bean seeds and the relationship with physiological quality, oil and protein content. Seed Science and Technology, 42(3), 433�??443. https://doi.org/10.15258/sst.2014.42.3.09

Song, Q. J., Quigley, C. V., Nelson, R. L., Carter, T. E., Boerma, H. R., Strachan, J. L., & Cregan, P. B. (1999). A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Varieties and Seeds, 12(3), 207�??220. Retrieved from https://experts.illinois.edu/en/publications/a-selected-set-of-trinucleotide-simple-sequence-repeat-markers-fo

Wang, L., Guan, R., Zhangxiong, L., Chang, R., & Qiu, L. (2006). Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science, 46(3), 1032�??1038. https://doi.org/10.2135/cropsci2005.0051

Yang, Y., Tong, Y., Li, X., He, Y., Xu, R., Liu, D., �?� Liao, H. (2019). Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean. Theoretical and Applied Genetics, 132(10), 2847�??2858. https://doi.org/10.1007/s00122-019-03392-3

Yang, Y., Wang, L., Zhang, D., Cheng, H., Wang, Q., Yang, H., & Yu, D. (2020). GWAS identifies two novel loci for photosynthetic traits related to phosphorus efficiency in soybean. Molecular Breeding, 40(3). https://doi.org/10.1007/s11032-020-01112-0

Published
2020-08-01
How to Cite
Morais Soares, M., Sediyama, T., & Matsuo, Éder. (2020). Efficiency and responsiveness of using phosphorus and molecular diversity among soybean cultivars. Agronomy Science and Biotechnology, 6, 1-11. https://doi.org/10.33158/ASB.r108.v6.2020

Most read articles by the same author(s)