Genetic control of soybean earliness and yield through the Hayman methodology

  • André Ricardo Gomes Bezerra Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
  • Tuneo Sediyama Universidade Federal de Viçosa
  • Cosme Damião Cruz Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
  • Felipe Lopes da Silva Universidade Federal de Viçosa, Departamento de Fitotecnia, Viçosa, MG, Brazil.
  • Pedro Crescêncio Souza Carneiro Universidade Federal de Viçosa
  • Guilherme S Paula Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
  • Waggner Gomes Palharini Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Keywords: Glycine max, Flowering days, Maturation days, Dominance average degree.

Abstract

The understanding of the genetic control involved in characters of agronomic interest is of extreme importance to breeders aiming at planning procedures for breeding programs. Thus, the objective of this work was to study genetic aspects related to earliness and grain yield found in the initial generations of soybean, twice each year. The study evaluated six soybean parentes (MSOY6101, RSF6563IPRO, TMG123RR, SYN9078RR, TMG801 and MSOY9144RR) and their 15 F1´s in a greenhouse, during winter and summer. A second experiment conducted at Prof. Diogo Alves de Melo experimental field, located on the UFV campus, in Vicosa-MG, during the 2014/2015 agricultural year assessed parents and their segregating populations (F2). In all experiments, information were collected from individual plants. Results showed that both additive and dominance effects were important for the genetic control of soybean earliness and grain yield. Number of days to flowering and maturation and grain yield for the F1 and F2 generations, in winter and summer, is determined by dominant alleles. In regards to the studied characters, there was partial dominance mainly for the F1 generation and overdominance for the F2 generation. Parents MSOY6101 and RSF6563IPRO showed greater concentration of favorable alleles for flowering and maturation time reduction, and parents TMG123RR and SYN9078RR for grain yield. Parents TMG801 and MSOY9144RR gave the best contribution to cycle retardation for the F2 generation.

Downloads

Download data is not yet available.

Author Biographies

André Ricardo Gomes Bezerra, Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Tuneo Sediyama, Universidade Federal de Viçosa

Universidade Federal de Viçosa, Departamento de Fitotecnia, Viçosa, MG, Brazil. 

Cosme Damião Cruz, Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil

Doutorado em Agronomia (Genética e Melhoramento de Plantas) pela Universidade de São Paulo

Felipe Lopes da Silva, Universidade Federal de Viçosa, Departamento de Fitotecnia, Viçosa, MG, Brazil.

Universidade Federal de Viçosa, Departamento de Fitotecnia, Viçosa, MG, Brazil. 

Pedro Crescêncio Souza Carneiro, Universidade Federal de Viçosa
Universidade Federal de Viçosa, Departamento e Biologia Geral, Viçosa, MG, Brazil
Guilherme S Paula, Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Waggner Gomes Palharini, Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil
Fundação MS Para Pesquisa e Difusão de Tecnologias Agropecuárias, Maracaju, MS, Brazil

References

Alvares CA, Stape JL, Sentelhas PC, De Moraes G, Leonardo J and Sparovek G (2013) Koppen's climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.

Barona MAA, Colombari Filho JM, Santos VS and Geraldi IO (2012) Epistatic effects on grain yield of soybean [Glycine max (L.) Merrill]. Crop Breeding Applied and Biotechnology 12: 231-236.

Barona MAA, Colombari Filho JM and Geraldi IO (2009) Epistasia para a produtividade de graos em soja. Bragantia 68: 313-318.

Bernard RL (1971) Two major genes for time of flowering and maturity in soybeans. Crop Science 11: 242-244. Bonato ER and Vello NA (1999a) E6, a dominant gene conditioning early flowering and maturity in soybeans.Genetics and Molecular Biology 22: 229-232.

Bonato ER and Vello NA (1999b) Aspectos geneticos do tempo para o florescimento em variantes naturais de soja. Pesquisa Agropecuaria Brasileira 34: 989-993.

Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescente-daylenth conditions. Canadian Journal of Genetic Cytology 13: 703-707.

Buzzell RI and Voldeng HD (1980) Inheritance of insensitivity to long day-lenth. Soybean Genetics Newslatter 7:26-29.

Cober ER, Molnar SJ, Charette M and Voldeng HD (2010) A new locus for early maturity in soybean. Crop Science 50: 524-527.

Cober ER, Tanner JW and Voldeng H (1996) Genetic control of photoperiod response in early-maturing, near isogenic soybean lines. Crop Science 36, 601-605.

Cober ER and Voldeng HD (2001) A new soybean maturity and photoperiod sensitivity locus linked to E1 and T. Crop Science 41: 698-701.

Cruz CD (2013) GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy 35: 271-276.

Cruz CD, Regazzi AJ and Carneiro PCS (2012) Modelos biometricos aplicados ao melhoramento genético 4th ed.Editora UFV, Vicosa, 514p, v.1.[

Fehr WR and Caviness CE (1977) Stages on soybean development. Special Report, 80. Iowa State University/Cooperative Extention Service, Ames, 11p.

Hartwig EE and Kiihl RAS (1979) Identification and utilization of a delayed flowering character in soybeans for short-day conditions. Field Crops Research 2: 45-51.

Hayman BI (1954) The theory and analysis of diallel crosses. Genetics 39: 789-809.

Jinks JL (1956) The F2 and backcross generations from a set of diallel crosses. Heredity 10: 1-30.

Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J and Liu B (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science 54: 2529-2535.

Mc Blain BA and Bernard RL (1987) A new gene affecting the time of maturity in soybean. Journal of Heredity 78:160-162.

Novais RF, Neves JCL and Barros NF (1991) Ensaio em ambiente protegido. In: Oliveira AJ, Garrido WE, Araujo JD and Lourenco S (coords.) Metodos de pesquisa em fertilidade do solo. EMBRAPA, Brasilia, 392p.

Ray JD, Hinson K, Mankono EB and Malo FM (1995) Genetic control of a long-juvenile trait in soybean. Crop Science 35: 1001-1006.

Singh RK and Chaudhary BD (1979) Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi, 304p.

Toledo JFF and Kiihl RAS (1982) Analise do modelo genetico envolvido no controle de dias para o florescimento em soja. Pesquisa Agropecuaria Brasileira 17: 623-631.

Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J Ishimoto M and Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany 113: 429-441.

Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T and Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology 13: 1-14.

Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T and Harada K (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion.DNA Research 8: 61-72.

Yang Z, Xin D, Liu C, Jiang H, Han X, Sun Y, Qi Z, Hu Z and Chen Q (2013) Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Molecular Genetics Genomics 288: 651-667.

Published
2017-12-15
How to Cite
Bezerra, A. R. G., Sediyama, T., Cruz, C. D., Silva, F. L. da, Carneiro, P. C. S., Paula, G. S., & Palharini, W. G. (2017). Genetic control of soybean earliness and yield through the Hayman methodology. Agronomy Science and Biotechnology, 3(2), 53. https://doi.org/10.33158/ASB.2017v3i2p53
Section
Article

Most read articles by the same author(s)