Sweet cassava cooking time
Abstract
Yield and culinary quality of tuber cassava roots can be influenced by several factors such as genotype, soil fertility, cultural management, climatic conditions, harvest, handling and storage after harvest as well as cooking ways. For consumers, the most important characteristics for sweet cassava roots are how fast they are cooked and its taste. Thus, the objective of this research was to the study the evolution of different methods to evaluate tuber cassava roots cooking time that can be used by breeders. It is essential that statistical analyses are realized, in order to arrive to confident results. Other important observations are the cost and ease of application of the methodology and whether more sophisticated equipment is available. Certainly, it is desirable an increase in carotenes, proteins, as well as yield, once for millions, sweet cassava is the main source of energy.
Downloads
References
Adjei-Nsiah, S. (2013). Farmers�?? Agronomic and Social Evaluation of the Productivity, Yield and Cooking Quality of Four Cassava Varieties. American Journal of Experimental Agriculture, 3(1), 165�??174. https://doi.org/10.9734/ajea/2013/2206
Afoakwa, E. O., Asiedu, C., Budu, A. S., Chiwona-Karltun, L., Nyirendah, D. B. (2012). Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta crantz) varieties. International Food Research Journal, 19(1), 175�??181. Retrieved from https://www.researchgate.net/publication/255687440_Chemical_composition_and_cyanogenic_potential_of_traditional_and_high_yielding_CMD_resistant_cassava_Manihot_esculenta_Crantz_varieties
Alves, A., Cansian, R. L., Stuart, G., Valduga, E. (2005). Alterações na qualidade de raízes de mandioca (Manihot esculenta Crantz) minimamente processadas. Ciência e Agrotecnologia, 29(2), 330�??337. https://doi.org/https://doi.org/10.1590/S1413-70542005000200009
Alves, A. A. C., & Setter, T. L. (2000). Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop Science, 40(1), 131�??137. https://doi.org/10.2135/cropsci2000.401131x
Andrade, E. C., Laranjeira, F. F. (2019). African cassava mosaic virus ( ACMV ) e a Doença do Mosaico da Mandioca ( Cassava Mosaic Disease , CMD ): Cruz das Almas, BA: Embrapa Mandioca e Fruticultura. Retrieved from https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1117975/1/Documento240EduardoChumbinhoAINFO.pdf.
Araújo, F. C. B., Moura, E. F., Cunha, R. L., Farias-Neto, J. T., Silva, R. S. (2019). Chemical root traits differentiate �??bitter�?? and �??sweet�?? cassava accessions from the Amazon. Crop Breeding and Applied Biotechnology, 19(1), 77�??85. https://doi.org/10.1590/1984-70332019v19n1a11
Balagopalan, C. (2002). Cassava: Biology, Production and Utilization. In Cassava: Biology, Production and Utilization (pp. 301�??318). CAB International. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/cabi_18ch15.pdf
Beléia, A., Prudencio-ferreira, S. H., Yamashita, F., Sakamoto, T. M., Ito, L. (2004). Sensory and Instrumental Texture Analysis of. Journal of Texture Studies, 35, 542�??553. https://doi.org/https://doi.org/10.1111/j.1745-4603.2004.35505.x
Beleia, A., Butarelo, S. S., & Silva, R. S. F. (2006). Modeling of starch gelatinization during cooking of cassava (Manihot esculenta Crantz). LWT - Food Science and Technology, 39(4), 400�??405. https://doi.org/10.1016/j.lwt.2005.02.021
Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7, 1�??29. https://doi.org/10.3390/agronomy7030056
Blahovec, J., Esmir, A. S., Vacek, J. (2000). Objective method for determination of potato cooking. In Objective method for determination of potato cooking (Vol. 2, pp. 1�??20). CIGR. Retrieved from https://cigrjournal.org/index.php/Ejounral/article/view/81/75.
Borges, M. D. F., Fukuda, W. M. G., & Rossetti, A. G. (2002). Avaliação de variedades de mandioca para consumo humano. Pesquisa Agropecuaria Brasileira, 37(11), 1559�??1565. https://doi.org/10.1590/s0100-204x2002001100006
Carvalho, L. J. C. B., Anderson, J. V, Silva, J. P., Chen, S., & Souza, C. R. B. (2019). Protein content in cassava storage root is associated with total abundance of carotenoids. International Research Journals, 10(1), 1�??10. Retrieved from https://ainfo.cnptia.embrapa.br/digital/bitstream/item/208114/1/protein-content-in-cassava-storage-root-is-associated-with-total-abundance-of-carotenoids.pdf
Charoenkul, N., Uttapap, D., Pathipanawat, W., & Takeda, Y. (2006). Molecular structure of starches from cassava varieties having different cooked root textures. Starch/Staerke, 58(9), 443�??452. https://doi.org/10.1002/star.200600515
Chávez, A. L., Sánchez, T., Jaramillo, G., Bedoya, J. M., Echeverry, J., Bolaños, E. A., �?� Iglesias, C. A. (2005). Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica, 143(1�??2), 125�??133. https://doi.org/10.1007/s10681-005-3057-2
Chisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and applications of cassava flour and starch: a review. Journal of Food Science and Technology, 56(6), 2799�??2813. https://doi.org/10.1007/s13197-019-03814-6
Destro, D., Bizeti, H. S., Marega Filho, M., Morais, L. K., Tróia, C., & Montalván, R. (2003). Genetic variability for traits related to cooking time in soybean. Cropp Breeding and Applied Biotechnology, 3(4), 275�??280. https://doi.org/10.12702/1984-7033.v03n04a05
Destro, D., Faria, A. P., Destro, T. M., Faria, R. T., Gonçalves, L. S. A., & Lima, W. F. (2013). Food type soybean cooking time: A review. Crop Breeding and Applied Biotechnology, 13(3), 194�??199. https://doi.org/10.1590/S1984-70332013000300007
Djabou, A. S. M., Carvalho, L. J. C. B., Li, Q. X., Niemenak, N., & Chen, S. (2017). Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death. Acta Physiologiae Plantarum, 39(4). https://doi.org/10.1007/s11738-017-2382-0
Eyinla, T. E., Maziya-Dixon, B., Alamu, O. E., & Sanusi, R. A. (2019). Retention of Pro-Vitamin A content in products from new biofortified cassava varieties. Foods, 8(5), 1�??14. https://doi.org/10.3390/foods8050177
FAO: Food and Agriculture Organization of the United Nations. (2013). Save and Grow: Cassava. FAO. Retrieved from http://www.fao.org/3/a-i3278e.pdf
FAO: Food and Agriculture Organization of the United Nations. (2018). Food Outlook - Biannual Report on Global Food Markets. Rome: FAO. Retrieved from http://www.fao.org/3/CA2320EN/ca2320en.pdf
Favaro, S. P., Beléia, A., Fonseca-Junior, N. S., & Waldron, K. W. (2008). The roles of cell wall polymers and intracellular components in the thermal softening of cassava roots. Food Chemistry, 108(1), 220�??227. https://doi.org/10.1016/j.foodchem.2007.10.070
Ferguson, M. E., Shah, T., Kulakow, P., & Ceballos, H. (2019). A global overview of cassava genetic diversity. PLoS ONE, 14(11), 1�??16. https://doi.org/10.1371/journal.pone.0224763
Fialho, J. F., Vieira, E. A. (2011). Seleção participativa de variedades de mandioca na agricultura familiar. Brasilia: Embrapa Cerrados. Retrieved from https://www.embrapa.br/documents/1354377/1743416/Seleção+Participativa+de+Variedades+de+Mandioca+na+Agricultura+Familiar.pdf/31855b72-e4cc-4a64-b75c-876defab73d4?version=1.0
Fukuda, W. M. G., Silva, S. O., Iglesias, C. (2002). Cassava Breeding. Crop Breeding and Applied Biotechnology, 2(4), 617�??638. Retrieved from http://www.sbmp.org.br/cbab/siscbab/uploads/c8128f42-57b1-acce.pdf
Githunguri, C. M. (1995). Transformation Alimentaire du Manioc. In S. Egbe, T. A., Brauman, A., Griffon, D., Trèche (Ed.), Transformation Alimentaire du Manioc. ORSTOM. Retrieved from https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques1/43515.pdf
Gleadow, R. M., & Woodrow, I. E. (2002). Constraints on the effectiveness of cyanogenic glycosides in herbivore defence. Journal of Chemical Ecology, 28(7), 1301�??1313. https://doi.org/https://doi.org/10.1023/A:1016298100201
Graham, J., Traylor, J. (2019). Cyanide Toxicity. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK507796/
Guira, F., Some, K., Kabore, D., Sawadogo-Lingani, H., Traore, Y., & Savadogo, A. (2017). Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Science and Nutrition, 5(3), 415�??423. https://doi.org/10.1002/fsn3.408
Henrique, C. M., Prati, P., Sarmento, S. B. S. (2010). Alterações fisiológicas em raízes de mandioca minimamente processadas. In Simpósio em Ciência e Tecnologia de Alimentos (pp. 1�??7). Aracaju. Retrieved from https://repositorio.usp.br/item/001822200
Iyer, S., Mattinson, D. S., & Fellman, J. K. (2010). Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Tropical Plant Biology, 3(3), 151�??165. https://doi.org/10.1007/s12042-010-9052-3
Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H., & Navarro-Racines, C. (2012). Is Cassava the Answer to African Climate Change Adaptation? Tropical Plant Biology, 5(1), 9�??29. https://doi.org/10.1007/s12042-012-9096-7
Kamau, J., Melis, R., Laing, M., Derera, J., Shanahan, P., & Ngugi, E. C. K. (2011). Farmers �?? participatory selection for early bulking cassava genotypes in semi-arid Eastern Kenya. Journal of Plant Breeding and Crop Science, 3(3), 44�??52. Retrieved from https://www.researchgate.net/publication/285828947_Farmers�??_participatory_selection_for_early_bulking_cassava_genotypes_in_semi-arid_Eastern_Kenya
Kouadio, O. K., Nindjin, C., Bonfoh, B., N�??dri, D., & Amani, G. N. (2011). Water absorption as an evaluation method of cooking quality for yam (Dioscorea alata) and cassava (Manihot esculenta crantz). Procedia Food Science, 1, 153�??159. https://doi.org/10.1016/j.profoo.2011.09.024
Lawless, H. T., Heymann, H. (1999). Physiological and psychological foundations of sensory function. In Sensory Evaluation of Food (pp. 28�??74). New York: Chapman and Hall. Retrieved from https://www.springer.com/gp/book/9781441964878
Lima, A. C. S., Viana, J. D. R., Sabino, L. B. S., Silva, L. M. R., Silva, N. K. V., Sousa, P. H. M. (2017). Processing of three different cooking methods of cassava: Effects on in vitro bioaccessibility of phenolic compounds and antioxidant activity. LWT - Food Science and Technology, 76, 253�??258. https://doi.org/10.1016/j.lwt.2016.07.023
Liu, G., Li, B., Li, X., Wei, Y., Liu, D., & Shi, H. (2019). Comparative physiological analysis of methyl jasmonate in the delay of postharvest physiological deterioration and cell oxidative damage in Cassava. Biomolecules, 9(9), 1�??14. https://doi.org/10.3390/biom9090451
Lorenzi, J. O. (1994). Variação na qualidade culinária das raízes de mandioca. Bragantia, 53(2), 237�??245. https://doi.org/10.1590/s0006-87051994000200013
Market Research Future. (2020). Cassava Market Global Research Report Information. Retrieved from https://www.marketresearchfuture.com/reports/cassava-market-4629
Mattson, S. (1946). The cookability of yellow peas. Acta Agriculturae Suecana, 2, 185�??231. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19471403040
Maxmen, A. (2019). How African scientists are improving cassava to help feed the world. Researchers in Nigeria are combining genomics and conventional breeding to improve the starchy staple crop. Nature, 565, 144�??146. https://doi.org/doi: 10.1038/d41586-019-00014-2
Mcmahon, J. M., White, W. L. B., & Sayre, R. T. (1995). Review article: Cyanogenesis in cassava (Manihot esculenta Crantz). Journal of Experimental Botany, 46(7), 731�??741. https://doi.org/10.1093/jxb/46.7.731
Miranda, L. A., Beleia, A. P., Fonseca-Junior, N. (2008). Cassava Cooking Time. Gene Conserve, 7(29), 489�??496. Retrieved from http://www.geneconserve.pro.br/site/articles/lib/pastaup/artigo042.pdf
Miranda, L. A., Spinosa, W. A., Destro, T. M., Souza-Junior, H., Nascimento, V. (2019). Influence of harvest time and agricultural year in yield components of table cassava cultivars. Agronomy Science and Biotechnology, 5(2), 77�??88. https://doi.org/10.33158/asb.2019v5i2p77
Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety, 8(3), 181�??194. https://doi.org/10.1111/j.1541-4337.2009.00077.x
Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., �?� Fregene, M. (2010). Tolerance to postharvest physiological deterioration in cassava roots. Crop Science, 50(4), 1333�??1338. https://doi.org/10.2135/cropsci2009.11.0666
Mtunguja, M. K., Beckles, D. M., Laswai, H. S., Ndunguru, J. C., & Sinha, N. J. (2019). Opportunities to commercialize cassava production for poverty alleviation and improved food security in Tanzania. African Journal of Food, Agriculture, Nutrition and Development, 19(1), 13928�??13946. https://doi.org/10.18697/AJFAND.84.BLFB1037
Mtunguja, Mariam K., Thitisaksakul, M., Muzanila, Y. C., Wansuksri, R., Piyachomkwan, K., Laswai, H. S., �?� Beckles, D. M. (2016). Assessing variation in physicochemical, structural, and functional properties of root starches from novel Tanzanian cassava (Manihot esculenta Crantz.) landraces. Starch/Staerke, 68(5�??6), 514�??527. https://doi.org/10.1002/star.201500179
Mufumbo, R., Baguma, Y., Kashub, S., Nuwamanya, E., Rubaihayo, P., Mukasa, S., �?� Kyamanywa, S. (2011). Amylopectin molecular structure and functional properties of starch from three Ugandan cassava varieties. Journal of Plant Breeding and Crop Science, 3(9), 195�??202. Retrieved from http://www.academicjournals.org/jpbcs
Narayanan, N. N., Ihemere, U., Ellery, C., & Sayre, R. T. (2011). Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021996
Odoemelam, C. S., Percival, B., Ahmad, Z., Chang, M. W., Scholey, D., Burton, B., Okafor, P. N., Wilson, P. B. (2020). Characterization Of Yellow Root Cassava And Food Products: Investigation Of Cyanogenic Glycosides And Pro-Vitamin A. BioRxiv Biochemistry, 371, 1�??19. https://doi.org/10.1101/2020.04.03.024224
Okogbenin, E., Setter, T. L., Ferguson, M., Mutegi, R., Ceballos, H., Olasanmi, B., & Fregene, M. (2013). Phenotypic approaches to drought in cassava: Review. Frontiers in Physiology, 4 MAY(May), 1�??15. https://doi.org/10.3389/fphys.2013.00093
Oliveira, M. A. de, Leonel, M., Cabello, C., Cereda, M. P., & Janes, D. A. (2005). Metodologia para avaliação do tempo de cozimento e características tecnológicas associadas em diferentes cultivares de mandioca. Ciência e Agrotecnologia, 29(1), 126�??133. https://doi.org/10.1590/s1413-70542005000100016
Oresegun, A., Fagbenro, O. A., Ilona, P., & Bernard, E. (2016). Nutritional and anti-nutritional composition of cassava leaf protein concentrate from six cassava varieties for use in aqua feed. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1147323
Otekunrin, O. A., & Sawicka, B. (2019). Cassava, A 21 st Century Staple Crop: How can Nigeria Harness its Enormous Trade Potentials? Acta Scientific Agriculture, 3(8), 194�??202. Retrieved from https://www.researchgate.net/publication/334698159_Cassava_a_21st_Century_Staple_Crop_How_can_Nigeria_Harness_Its_Enormous_Trade_Potentials
Pedri, E. C. M., Rossi, A. A. B., Cardoso, E. S., Tiago, A. V., Hoogerheide, E. S. S., & Yamashita, O. M. (2018). Características morfológicas e culinárias de etnovariedades de mandioca de mesa em diferentes épocas de colheita. Brazilian Journal of Food Technology, 21(0). https://doi.org/10.1590/1981-6723.07318
PEREIRA, A. S., LORENZI, J. O., VALLE, T. L. (1985). Avaliacao do tempo de cozimento e padrao de massa cozida em mandiocas de mesa. Revista Brasileira de Mandioca, 4(1), 27�??32. Retrieved from http://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=633308&biblioteca=vazio&busca=autoria:%22A%22&qFacets=autoria:%22A%22&sort=&paginacao=t&paginaAtual=5771
Peryam, D. R., Pilgrim, F. J. (1957). Hedonic scale method of measuring food preferences. Food Technology, 11(Supplement), 9�??14. Retrieved from http://www.sciepub.com/reference/161114
Popoola, J. O., Egwari, L. O., Bilewu, Y., Omonigbehin, E., Ogunlana, O. O., & Daramola, F. (2019). Proximate analysis and SDS-PAGE protein profiling of cassava leaves: utilization as leafy vegetable in Nigeria. MOJ Ecology & Environmental Sciences Research, 4(1), 1�??5. https://doi.org/10.15406/mojes.2019.04.00125
Ramírez-Cárdenas, L., Leonel, A. J., & Costa, N. M. B. (2008). Efeito do processamento doméstico sobre o teor de nutrientes e de fatores antinutricionais de diferentes cultivares de feijão comum. Ciencia e Tecnologia de Alimentos, 28(1), 200�??213. https://doi.org/10.1590/S0101-20612008000100029
Reyes, J., Snow, T., & Rodd, T. (2018). Replacing Feed Protein with Cassava Leaf Meal ( CLM ) Protein in Weaner and Growing Pigs �?? Diets. CCAMLR Science, 25(3), 253�??260. Retrieved from http://www.ccamlrscience.com/index.php/ccamlrscience/article/view/247/0
Rimoldi, F., Vidigal Filho, P. S., Vidigal, M. C. G., Clemente, E., Pequeno, M. G., Miranda, L., & Kvitschal, M. V. (2006). Produtividade, composição química e tempo de cozimento de cultivares de mandiocademesa coletadas no Estado do Paraná. Acta Scientiarum. Agronomy, 28(1), 63�??69. https://doi.org/10.4025/actasciagron.v28i1.1308
Rodríguez-Sandoval, E., Fernández-Quintero, A., Sandoval-Aldana, A., Quicazán, M. C. (2007). on the Textural Properties of Cassava Dough. Journal of Texture Studies, 39(2008), 68�??82. https://doi.org/https://doi.org/10.1111/j.1745-4603.2007.00131.x
Salcedo, A. (2011). Insights into the Physiological, Biochemical and Molecular Basis of Postharvest Deterioration in Cassava (Manihot esculenta) Roots. American Journal of Experimental Agriculture, 1(4), 414�??431. https://doi.org/10.9734/ajea/2011/784
Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86(4), 634�??639. https://doi.org/10.1002/jsfa.2371
Singh, S., Singh, N., Isono, N., & Noda, T. (2010). Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural and Food Chemistry, 58(2), 1180�??1188. https://doi.org/10.1021/jf902753f
Talma, S. V., Almeida, S. B., Lima, R. M. P., Vieira, H. D., & Bebert, P. A. (2013). Tempo de cozimento e textura de raízes de mandioca. Brazilian Journal of Food Technology, 16(2), 133�??138. https://doi.org/10.1590/s1981-67232013005000016
Taylor, N. J., Fauquet, C. M., & Tohme, J. (2012). Overview of Cassava Special Issue. Tropical Plant Biology, 5(1), 1�??3. https://doi.org/10.1007/s12042-012-9098-5
Thakkar, S. K., Huo, T., Maziya-Dixon, B., & Failla, M. L. (2009). Impact of style of processing on retention and bioaccessibility of β-carotene in cassava (Manihot esculenta, Crantz). Journal of Agricultural and Food Chemistry, 57(4), 1344�??1348. https://doi.org/10.1021/jf803053d
Valduga, E., Tomicki, L., Witschinski, F., Colet, R., Peruzzolo, M., Ceni, G. C. (2011). Avaliação da aceitabilidade e dos componentes minerais de diferentes cultivares de mandioca (Manihot esculenta Crantz) após a cocção. Alimentos e Nutricao, 22(2), 205�??210. Retrieved from https://biblat.unam.mx/pt/revista/alimentos-e-nutricao/articulo/avaliacao-da-aceitabilidade-e-dos-componentes-minerais-de-diferentes-cultivares-de-mandioca-manihot-esculenta-crantz-apos-a-coccao
Vasconcelos, L. M., Brito, A. C., Carmo, C. D., Oliveira, P. H. G. A., & Oliveira, E. J. (2017). Phenotypic diversity of starch granules in cassava germplasm. Genetics and Molecular Research, 16(2), 1�??15. https://doi.org/10.4238/gmr16029276
Vieira, E. A., Fialho, J. F., de Julio, L., Carvalho, L. J. C. B., Corte, J. L. D., Rinaldi, M. M., �?� Anjos, J. R. N. (2018). Sweet cassava cultivars with yellow or cream root pulp developed by participatory breedin. Crop Breeding and Applied Biotechnology, 18(4), 450�??454. https://doi.org/10.1590/1984-70332018V18N4C67
Yeoh, H. H., & Truong, V. Den. (1996). Protein contents, amino acid compositions and nitrogen-to-protein conversion factors for Cassava roots. Journal of the Science of Food and Agriculture, 70(1), 51�??54. https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<51::AID-JSFA463>3.0.CO;2-W
Yu, W., Li, H., Zou, W., Tao, K., Zhu, J., & Gilbert, R. G. (2019). Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends in Food Science and Technology, 86, 530�??536. https://doi.org/10.1016/j.tifs.2018.08.003
Copyright (c) 2020 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.