Overexpression of full-length and partial DREB2A enhances soybean drought tolerance

  • Juliane Prela Marinho Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil.
  • Renata Fuganti Pagliarini Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil. https://orcid.org/0000-0001-9282-2826
  • Mayla Daiane Correa Molinari Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil. https://orcid.org/0000-0002-9135-0422
  • Juliana Marcolino-Gomes Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil.
  • André Luís Hartmann Caranhoto Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil. https://orcid.org/0000-0003-3209-7962
  • Silvana Regina Rockenbach Marin Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil.
  • Maria Cristina Neves Oliveira Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil.
  • José Salvador Simonet Foloni Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil.
  • Carlos Lasaro Pereira Melo Embrapa Soja, Carlos João Strass Road. Orlando Amaral Acess. Warta. CEP 86001-970, Londrina, PR, Brazil. https://orcid.org/0000-0003-4787-8382
  • Satoshi Kidokoro Laboratory of Plant Molecular Physiology. Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
  • Junya Mizoi Plant Molecular Physiology Laboratory. Applied Biological Chemistry Department. University of Tokyo, Bunkyo-ku, Tokyo, Japan. https://orcid.org/0000-0002-3383-8059
  • Norihito Kanamori Division of Biological Resources and Post-harvest. Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan.
  • Kazuko Yamaguchi-Shinozaki Plant Molecular Physiology Laboratory. Applied Biological Chemistry Department. University of Tokyo, Bunkyo-ku, Tokyo, Japan
  • Kazuo Nakashima Division of Biological Resources and Post-harvest. Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan. https://orcid.org/0000-0001-6417-8316
  • Alexandre Lima Nepomuceno Embrapa Soybean, Carlos João Strass Road. Orlando Amaral Acess. Warta. PO. Box 231 86001-970, Londrina, PR, Brazil.
  • Liliane Marcia Mertz-Henning Embrapa Soybean, Carlos João Strass Road. Orlando Amaral Acess. Warta. PO. Box 231 86001-970, Londrina, PR, Brazil. https://orcid.org/0000-0001-7622-0649
Keywords: Glycine max, genetically modified plants, heat tolerance, activating responses to drought, silencing responses to drought, controlling responses to drought

Abstract

Soybean is an important commodity worldwide. Abiotic conditions can adversely disturb crop growth and final yield. The transcription factor Dehydration-Responsive Element-Binding Proteins 2 (DREB2) act as a regulator of drought-responses. This study aimed to characterize soybean plants genetically modified with GmDREB2A;2 FL and GmDREB2A;2 CA for molecular, physiological, and agronomic responses, at different developmental periods. Results showed that seedlings from GmDREB2A;2 FL event presented lower growth reduction under osmotic treatment during germination. The GmDREB2A;2 FL and GmDREB2A;2 CA events showed improved performance in experiments of water deficit imposed in the vegetative period and higher rates in physiological parameters. In the reproductive period, there was a trend of higher yield compounds in GM GmDREB2A;2 FL event when compared to other genotypes and treatments. It was suggested that GmDREB2A;2 FL event presented superior performance due to the higher expression levels of the cisgene and drought-induced genes.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

References

Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiology, 148(1), 6-24. https://doi.org/10.1104/pp.108.120725

Chavarria, G., Durigon, M. R., Klein, V. A., & Kleber, H. (2015). Photosynthetic restriction of soybean plants under variation of water availability. Ciência Rural, 45(8), 1387-1393. http://dx.doi.org/10.1590/0103-8478cr20140705

Chiappetta, A., Muto, A., Bruno, L., Woloszynska, M., Van Lijsebettens, M., & Bitonti, M. B. (2015). A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Frontiers in Plant Science, 6(392), 1-15. https://doi.org/10.3389/fpls.2015.00392

Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., & Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26 (8), 2006-2017. https://doi.org/10.1016/j.sjbs.2019.08.005

Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., ... & Yamaguchi�?�Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought�?�, high�?�salt�?� and cold�?�responsive gene expression. The Plant Journal, 33(4), 751-763. https://doi.org/10.1046/j.1365-313X.2003.01661.x

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(03), 269-279. https://doi.org/10.1055/s-2004-820867

Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B., Marin, S. R., Molinari, M. D., ... & Nepomuceno, A. L. (2017). Characterization of soybean genetically modified for drought tolerance in field conditions. Frontiers in Plant Science, 8(448), 1-15. https://doi.org/10.3389/fpls.2017.00448

Guo, J., & Wang, M. H. (2011). Expression profiling of the DREB2 type gene from tomato (Solanum lycopersicum L.) under various abiotic stresses. Horticulture, Environment, and Biotechnology, 52(1), 105-111. https://doi.org/10.1007/s13580-011-0125-5

Honna, P. T., Fuganti-Pagliarini, R., Ferreira, L. C., Molinari, M. D., Marin, S. R., de Oliveira, M. C., ... & Nepomuceno, A. L. (2016). Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Molecular Breeding, 36(11), 1-17. https://doi.org/10.1007/s11032-016-0570-z

Koag, M. C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiology, 150(3), 1503-1514. https://doi.org/10.1104/pp.109.136697

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2�?? �?�?CT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Lopes, M. A., Faleiro, F. G., Ferreira, M. E., Lopes, D. B., Vivian, R., & Boiteux, L. S. (2012). Contribuição da Embrapa na produção de novas cultivares de plantas e seu impacto na agricultura. Crop Breeding and Applied Biotechnology, 12, 31-46. https://doi.org/10.1590/S1984-70332012000500005

Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Nakayama, T. J., Ribeiro Reis, R., Bouças Farias, J. R., ... & Nepomuceno, A. (2015). Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day. PLoS ONE, 10(9), e0139051. https://doi.org/10.1371/journal.pone.0139051

Marinho, J. P., Coutinho, I. D., Lameiro, R. F., Marin, S. R. R., Colnago, L. A., Nakashima, K., ... & Mertz-Henning, L. M. (2019). Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A; 2 FL and GmDREB2A; 2 CA transcription factors during water deficit. Plant Physiology and Biochemistry, 140, 122-135. https://doi.org/10.1016/j.plaphy.2019.04.040

Mizoi, J., Ohori, T., Moriwaki, T., Kidokoro, S., Todaka, D., Maruyama, K., ... & Yamaguchi-Shinozaki, K. (2013). GmDREB2A; 2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiology, 161(1), 346-361. https://doi.org/10.1104/pp.112.204875

Molinari, M. D. C., Fuganti-Pagliarini, R., Barbosa, D. A., Andreatta, E. C., Nepomuceno, A. L., & Hertz-Henning, L. M. (2018). Seleção de sementes de soja geneticamente modificadas com o gene marcador bar por meio do teste de germinação em solução de glufosinato de amônio. Revista de Ciências Agrárias - Amazonian Journal of Agricultural and Environmental Sciences, 61, 1-17. http://dx.doi.org/10.22491/rca.2018.2883

Molinari, M. D. C., Fuganti-Pagliarini, R., Marin, S. R. R., Ferreira, L. C., Barbosa, D. D. A., Marcolino-Gomes, J., ... & Nepomuceno, A. L. (2020). Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genetics and Molecular Biology, 43(3), 1-12. https://doi.org/10.1590/1678-4685-GMB-2019-0292

Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W., & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120. https://doi.org/10.1016/j.plaphy.2014.11.010

Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206-213. https://doi.org/10.1007/s00299-005-0048-7

Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36-e36. https://doi.org/10.1093/nar/30.9.e36

Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., ... & Yamaguchi�?�Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50(1), 54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x

Quain, M. D., Makgopa, M. E., Márquez�?�García, B., Comadira, G., Fernandez�?�Garcia, N., Olmos, E., ... & Foyer, C. H. (2014). Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 12(7), 903-913. https://doi.org/10.1111/pbi.12193

Sadhukhan, A., Kobayashi, Y., Kobayashi, Y., Tokizawa, M., Yamamoto, Y. Y., Iuchi, S., ... & Sahoo, L. (2014). VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta, 240(3), 645-664. https://doi.org/10.1007/s00425-014-2111-5

Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006a). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18(5), 1292-1309. https://doi.org/10.1105/tpc.105.035881

Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006b). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences, 103(49), 18822-18827. https://doi.org/10.1073/pnas.0605639103

Terashima, A., & Takumi, S. (2009). Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2. Genome, 52(1), 100-105. https://doi.org/10.1139/G08-101

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3(347), 1-26.. https://doi.org/10.3389/fphys.2012.00347

Vieira, F. C. F., Santos Junior, C. D., Nogueira, A. P. O., Dias, A. C. C., Hamawaki, O. T., & Bonetti, A. M. (2013). Physiological and biochemical aspects of soybean cultivars submitted to water deficit induced by PEG 6000. Bioscience Journal, 29(3), 543-552. http://www.seer.ufu.br/.../12495

Villela, F. A., & Beckert, O. P. (2001). Potencial osmótico de soluções aquosas de polietileno glicol 8000. Revista Brasileira de Sementes, 23, 267-275. https://www.abrates.org.br/files/artigos/58984c51c1fcf3.05150811_artigo37.pdf

Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., Zhang, C., ... & Wang, Y. (2012). Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biology, 12(1), 1-17. https://doi.org/10.1186/1471-2229-12-140

Published
2021-09-16
How to Cite
Marinho, J. P., Pagliarini, R. F., Molinari, M. D. C., Marcolino-Gomes, J., Caranhoto, A. L. H., Marin, S. R. R., Oliveira, M. C. N., Foloni, J. S. S., Melo, C. L. P., Kidokoro, S., Mizoi, J., Kanamori, N., Yamaguchi-Shinozaki, K., Nakashima, K., Nepomuceno, A. L., & Mertz-Henning, L. M. (2021). Overexpression of full-length and partial DREB2A enhances soybean drought tolerance . Agronomy Science and Biotechnology, 8, 1-21. https://doi.org/10.33158/ASB.r141.v8.2022