Overexpression of full-length and partial DREB2A enhances soybean drought tolerance
Abstract
Soybean is an important commodity worldwide. Abiotic conditions can adversely disturb crop growth and final yield. The transcription factor Dehydration-Responsive Element-Binding Proteins 2 (DREB2) act as a regulator of drought-responses. This study aimed to characterize soybean plants genetically modified with GmDREB2A;2 FL and GmDREB2A;2 CA for molecular, physiological, and agronomic responses, at different developmental periods. Results showed that seedlings from GmDREB2A;2 FL event presented lower growth reduction under osmotic treatment during germination. The GmDREB2A;2 FL and GmDREB2A;2 CA events showed improved performance in experiments of water deficit imposed in the vegetative period and higher rates in physiological parameters. In the reproductive period, there was a trend of higher yield compounds in GM GmDREB2A;2 FL event when compared to other genotypes and treatments. It was suggested that GmDREB2A;2 FL event presented superior performance due to the higher expression levels of the cisgene and drought-induced genes.
Downloads
References
Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiology, 148(1), 6-24. https://doi.org/10.1104/pp.108.120725
Chavarria, G., Durigon, M. R., Klein, V. A., & Kleber, H. (2015). Photosynthetic restriction of soybean plants under variation of water availability. Ciência Rural, 45(8), 1387-1393. http://dx.doi.org/10.1590/0103-8478cr20140705
Chiappetta, A., Muto, A., Bruno, L., Woloszynska, M., Van Lijsebettens, M., & Bitonti, M. B. (2015). A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Frontiers in Plant Science, 6(392), 1-15. https://doi.org/10.3389/fpls.2015.00392
Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C., & Liu, L. (2019). A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26 (8), 2006-2017. https://doi.org/10.1016/j.sjbs.2019.08.005
Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., ... & Yamaguchi�?�Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought�?�, high�?�salt�?� and cold�?�responsive gene expression. The Plant Journal, 33(4), 751-763. https://doi.org/10.1046/j.1365-313X.2003.01661.x
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(03), 269-279. https://doi.org/10.1055/s-2004-820867
Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B., Marin, S. R., Molinari, M. D., ... & Nepomuceno, A. L. (2017). Characterization of soybean genetically modified for drought tolerance in field conditions. Frontiers in Plant Science, 8(448), 1-15. https://doi.org/10.3389/fpls.2017.00448
Guo, J., & Wang, M. H. (2011). Expression profiling of the DREB2 type gene from tomato (Solanum lycopersicum L.) under various abiotic stresses. Horticulture, Environment, and Biotechnology, 52(1), 105-111. https://doi.org/10.1007/s13580-011-0125-5
Honna, P. T., Fuganti-Pagliarini, R., Ferreira, L. C., Molinari, M. D., Marin, S. R., de Oliveira, M. C., ... & Nepomuceno, A. L. (2016). Molecular, physiological, and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Molecular Breeding, 36(11), 1-17. https://doi.org/10.1007/s11032-016-0570-z
Koag, M. C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiology, 150(3), 1503-1514. https://doi.org/10.1104/pp.109.136697
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2�?? �?�?CT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Lopes, M. A., Faleiro, F. G., Ferreira, M. E., Lopes, D. B., Vivian, R., & Boiteux, L. S. (2012). Contribuição da Embrapa na produção de novas cultivares de plantas e seu impacto na agricultura. Crop Breeding and Applied Biotechnology, 12, 31-46. https://doi.org/10.1590/S1984-70332012000500005
Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Nakayama, T. J., Ribeiro Reis, R., Bouças Farias, J. R., ... & Nepomuceno, A. (2015). Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day. PLoS ONE, 10(9), e0139051. https://doi.org/10.1371/journal.pone.0139051
Marinho, J. P., Coutinho, I. D., Lameiro, R. F., Marin, S. R. R., Colnago, L. A., Nakashima, K., ... & Mertz-Henning, L. M. (2019). Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A; 2 FL and GmDREB2A; 2 CA transcription factors during water deficit. Plant Physiology and Biochemistry, 140, 122-135. https://doi.org/10.1016/j.plaphy.2019.04.040
Mizoi, J., Ohori, T., Moriwaki, T., Kidokoro, S., Todaka, D., Maruyama, K., ... & Yamaguchi-Shinozaki, K. (2013). GmDREB2A; 2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiology, 161(1), 346-361. https://doi.org/10.1104/pp.112.204875
Molinari, M. D. C., Fuganti-Pagliarini, R., Barbosa, D. A., Andreatta, E. C., Nepomuceno, A. L., & Hertz-Henning, L. M. (2018). Seleção de sementes de soja geneticamente modificadas com o gene marcador bar por meio do teste de germinação em solução de glufosinato de amônio. Revista de Ciências Agrárias - Amazonian Journal of Agricultural and Environmental Sciences, 61, 1-17. http://dx.doi.org/10.22491/rca.2018.2883
Molinari, M. D. C., Fuganti-Pagliarini, R., Marin, S. R. R., Ferreira, L. C., Barbosa, D. D. A., Marcolino-Gomes, J., ... & Nepomuceno, A. L. (2020). Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genetics and Molecular Biology, 43(3), 1-12. https://doi.org/10.1590/1678-4685-GMB-2019-0292
Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W., & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry, 86, 109-120. https://doi.org/10.1016/j.plaphy.2014.11.010
Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206-213. https://doi.org/10.1007/s00299-005-0048-7
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36-e36. https://doi.org/10.1093/nar/30.9.e36
Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., ... & Yamaguchi�?�Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50(1), 54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x
Quain, M. D., Makgopa, M. E., Márquez�?�García, B., Comadira, G., Fernandez�?�Garcia, N., Olmos, E., ... & Foyer, C. H. (2014). Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 12(7), 903-913. https://doi.org/10.1111/pbi.12193
Sadhukhan, A., Kobayashi, Y., Kobayashi, Y., Tokizawa, M., Yamamoto, Y. Y., Iuchi, S., ... & Sahoo, L. (2014). VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta, 240(3), 645-664. https://doi.org/10.1007/s00425-014-2111-5
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006a). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18(5), 1292-1309. https://doi.org/10.1105/tpc.105.035881
Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006b). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences, 103(49), 18822-18827. https://doi.org/10.1073/pnas.0605639103
Terashima, A., & Takumi, S. (2009). Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2. Genome, 52(1), 100-105. https://doi.org/10.1139/G08-101
Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3(347), 1-26.. https://doi.org/10.3389/fphys.2012.00347
Vieira, F. C. F., Santos Junior, C. D., Nogueira, A. P. O., Dias, A. C. C., Hamawaki, O. T., & Bonetti, A. M. (2013). Physiological and biochemical aspects of soybean cultivars submitted to water deficit induced by PEG 6000. Bioscience Journal, 29(3), 543-552. http://www.seer.ufu.br/.../12495
Villela, F. A., & Beckert, O. P. (2001). Potencial osmótico de soluções aquosas de polietileno glicol 8000. Revista Brasileira de Sementes, 23, 267-275. https://www.abrates.org.br/files/artigos/58984c51c1fcf3.05150811_artigo37.pdf
Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., Zhang, C., ... & Wang, Y. (2012). Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biology, 12(1), 1-17. https://doi.org/10.1186/1471-2229-12-140
Copyright (c) 2022 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.