The effects of a few important gene families on sorghum agronomic traits
Abstract
Sorghum (Sorghum bicolor [L.] Moench), a main food for more than 500 million impoverished and food insecure people in arid and semi-arid regions of Sub-Saharan Africa (SSA) and South Asia, is an important crop for food and nutritional security (SA). Sorghum has the most acceptance in these drought-prone areas due to its good tolerance to harsh settings, high yield, and use as a good source of forages. In this review, the objective of this study is to document the production and use Sorghum in improvement programmed through a literature review, we used publications from journals to explore gene families, how they evolved, gene family theories, how gene families influenced agronomic features in sorghum, and in-depth studies of the key ten gene families in sorghum. The future prospects on sorghum enhancement include genomic selections and gene families, as well as comparative genomic selections. Furthermore, understanding the mechanism of these gene families is important for addressing problems that plague sorghum production, including as infections, drought, and heat stress. We can accurately improve traits using modern techniques such as marker-assisted selection, Genomic selections (GS), Marker-assisted backcrossing (MABC), Marker-assisted recurrent selection (MARS), Marker-assisted selections (MAS), and Genome-wide selections (GWAS) if we have the above gene families of interest (GWAS). Sorghum as a desirable breed: future paths and prospects.
Downloads
References
Ananda, G. K. S., Myrans, H., Norton, S. L., Gleadow, R., Furtado, A., & Henry, R. J. (2020). Wild Sorghum as a Promising Resource for Crop Improvement. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.01108
Baillo, E. H., Hanif, M. S., Guo, Y., Zhang, Z., Xu, P., & Algam, S. A. (2020). Genome-wide identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS ONE, 15(8), 1–24. https://doi.org/10.1371/journal.pone.0236651
Barros, V. A., Chandnani, R., Sousa, S. M., Maciel, L. S., Tokizawa, M., Guimaraes, C. T., … Kochian, L. V. (2020). Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 11, 1–25. https://doi.org/10.3389/fpls.2020.565339
Burow, G. B., Franks, C. D., Acosta-Martinez, V., & Xin, Z. (2009). Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theoretical and Applied Genetics, 118(3), 423–431. https://doi.org/10.1007/s00122-008-0908-y
Calvino, M., & Messing, J. (2012). Sweet sorghum as a model system for bioenergy crops. Current Opinion in Biotechnology, 23(3), 323–329. https://doi.org/10.1016/j.copbio.2011.12.002
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., Campos, G., … Varshney, R. K. (2017). Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 22(11), 961–975. https://doi.org/10.1016/j.tplants.2017.08.011
Hagen, G., & Guilfoyle, T. (2002). Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology, 49(3–4), 373–385. https://doi.org/10.1023/A:1015207114117
Han, L., Chen, J., Mace, E. S., Liu, Y., Zhu, M., Yuyama, N., … Cai, H. (2015). Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theoretical and Applied Genetics, 128(9), 1813–1825. https://doi.org/10.1007/s00122-015-2549-2
Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., Liu, Y., … Jing, H. C. (2021). Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 134(7), 1899–1924. https://doi.org/10.1007/s00122-021-03789-z
Kim, J. S., Klein, P. E., Klein, R. R., Price, H. J., Mullet, J. E., & Stelly, D. M. (2005). Chromosome identification and nomenclature of Sorghum bicolor. Genetics, 169(2), 1169–1173. https://doi.org/10.1534/genetics.104.035980
Kumar, M., Le, D. T., Hwang, S., Seo, P. J., & Kim, H. U. (2019). Role of the INDETERMINATE DOMAIN genes in plants. International Journal of Molecular Sciences, 20(9), 1–16. https://doi.org/10.3390/ijms20092286
Li, J., Liu, X., Wang, Q., Sun, J., & He, D. (2021). Genome-wide identification and analysis of cystatin family genes in Sorghum (Sorghum bicolor (L.) Moench). PeerJ, 9(Group I), 1–24. https://doi.org/10.7717/peerj.10617
Li, J., Li, S., Han, B., Yu, M., Li, G., & Jiang, Y. (2013). A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnology for Biofuels and Bioproducts, 6(1), 1–12. https://doi.org/10.1186/1754-6834-6-174
Liu, F. H., & Yang, F. (2020). Male sterility induction and evolution of cytoplasmic male sterility related atp9 gene from Boehmeria nivea (L.) Gaudich. Industrial Crops and Products, 156(August), 112861. https://doi.org/10.1016/j.indcrop.2020.112861
Liu, J., Fernie, A. R., & Yan, J. (2020). The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Communications, 1(1), 1–19. https://doi.org/10.1016/j.xplc.2019.100010
Luo, J., Zhou, J. J., & Zhang, J. Z. (2018). Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19(1), 1–17. https://doi.org/10.3390/ijms19010259
Mace, E., Tai, S., Innes, D., Godwin, I., Hu, W., Campbell, B., … Jordan, D. (2014). The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 14(1), 1–14. https://doi.org/10.1186/s12870-014-0253-z
Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S., Cornell, S. E., … Woodward, G. (2014). Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 28(1), 289–297. https://doi.org/10.1016/j.gloenvcha.2014.07.009
Marone, D., Russo, M. A., Laidò, G., Leonardis, A. M., & Mastrangelo, A. M. (2013). Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. International Journal of Molecular Sciences, 14(4), 7302–7326. https://doi.org/10.3390/ijms14047302
Mizuno, H., Kasuga, S., & Kawahigashi, H. (2016). The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels and Bioproducts, 9(1), 1–12. https://doi.org/10.1186/s13068-016-0546-6
Ohta, T. (1990). How gene families evolve. Theoretical Population Biology, 37(1), 213–219. https://doi.org/10.1016/0040-5809(90)90036-U
Pandey, P., Singh, J., Achary, V. M. M., & Reddy, M. K. (2015). Redox homeostasis via gene families of ascorbate-glutathione pathway. Frontiers in Environmental Science, 3, 1–14. https://doi.org/10.3389/fenvs.2015.00025
Patil, G., Valliyodan, B., Deshmukh, R., Prince, S., Nicander, B., Zhao, M., … Nguyen, H. T. (2015). Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 16(1), 1–16. https://doi.org/10.1186/s12864-015-1730-y
Rai, K. M., Thu, S. W., Balasubramanian, V. K., Cobos, C. J., Disasa, T., & Mendu, V. (2016). Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) moench, a food, fodder, and biofuel crop. Frontiers in Plant Science, 7(AUG2016), 1–19. https://doi.org/10.3389/fpls.2016.01287
Reddy, P. S., Rao, T. S. R. B., Sharma, K. K., & Vadez, V. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28. https://doi.org/10.1016/j.plgene.2014.12.002
Sattler, S. E., Singh, J., Haas, E. J., Guo, L., Sarath, G., & Pedersen, J. F. (2017). Two distinct waxy alleles impact the granule-bound starch synthase in sorghum. Molecular Breeding, 24(4), 349–359. https://doi.org/10.1007/s11032-009-9296-5
Singh, R. K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A., & Prasad, M. (2016). Genome-wide analysis of heat shock proteins in C 4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Scientific Reports, 6(6), 1–14. https://doi.org/10.1038/srep32641
Tran, L. T., Taylor, J. S., & Constabel, C. P. (2012). The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics, 13(1), 1–12. https://doi.org/10.1186/1471-2164-13-395
Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., … Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969–976. https://doi.org/10.1038/nbt.3943
Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., … Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional and Integrative Genomics, 10(4), 533–546. https://doi.org/10.1007/s10142-010-0174-3
White, G. M., Hamblin, M. T., & Kresovich, S. (2004). Molecular Evolution of the Phytochrome Gene Family in Sorghum: Changing Rates of Synonymous and Replacement Evolution. Molecular Biology and Evolution, 21(4), 716–723. https://doi.org/10.1093/molbev/msh067
Zhang, D., Li, J., Compton, R. O., Robertson, J., Goff, V. H., Epps, E., … Paterson, A. H. (2015). Comparative Genetics of seed size traits in divergent cereal lineages represented by sorghum (Panicoidae) and Rice (Oryzoidae). G3: Genes, Genomes, Genetics, 5(6), 1117–1128. https://doi.org/10.1534/g3.115.017590
Zheng, L. Y., Guo, X. Sen, He, B., Sun, L. J., Peng, Y., Dong, S. S., … Jing, H. C. (2011). Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology, 12(11), 1–15. https://doi.org/10.1186/gb-2011-12-11-r114
Copyright (c) 2023 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.