The effects of a few important gene families on sorghum agronomic traits
Resumo
Downloads
Referências
Ananda, G. K. S., Myrans, H., Norton, S. L., Gleadow, R., Furtado, A., & Henry, R. J. (2020). Wild Sorghum as a Promising Resource for Crop Improvement. Frontiers in Plant Science, 11, 1–14. https://doi.org/10.3389/fpls.2020.01108
Baillo, E. H., Hanif, M. S., Guo, Y., Zhang, Z., Xu, P., & Algam, S. A. (2020). Genome-wide identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS ONE, 15(8), 1–24. https://doi.org/10.1371/journal.pone.0236651
Barros, V. A., Chandnani, R., Sousa, S. M., Maciel, L. S., Tokizawa, M., Guimaraes, C. T., … Kochian, L. V. (2020). Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 11, 1–25. https://doi.org/10.3389/fpls.2020.565339
Burow, G. B., Franks, C. D., Acosta-Martinez, V., & Xin, Z. (2009). Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theoretical and Applied Genetics, 118(3), 423–431. https://doi.org/10.1007/s00122-008-0908-y
Calvino, M., & Messing, J. (2012). Sweet sorghum as a model system for bioenergy crops. Current Opinion in Biotechnology, 23(3), 323–329. https://doi.org/10.1016/j.copbio.2011.12.002
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., Campos, G., … Varshney, R. K. (2017). Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 22(11), 961–975. https://doi.org/10.1016/j.tplants.2017.08.011
Hagen, G., & Guilfoyle, T. (2002). Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology, 49(3–4), 373–385. https://doi.org/10.1023/A:1015207114117
Han, L., Chen, J., Mace, E. S., Liu, Y., Zhu, M., Yuyama, N., … Cai, H. (2015). Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theoretical and Applied Genetics, 128(9), 1813–1825. https://doi.org/10.1007/s00122-015-2549-2
Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., Liu, Y., … Jing, H. C. (2021). Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 134(7), 1899–1924. https://doi.org/10.1007/s00122-021-03789-z
Kim, J. S., Klein, P. E., Klein, R. R., Price, H. J., Mullet, J. E., & Stelly, D. M. (2005). Chromosome identification and nomenclature of Sorghum bicolor. Genetics, 169(2), 1169–1173. https://doi.org/10.1534/genetics.104.035980
Kumar, M., Le, D. T., Hwang, S., Seo, P. J., & Kim, H. U. (2019). Role of the INDETERMINATE DOMAIN genes in plants. International Journal of Molecular Sciences, 20(9), 1–16. https://doi.org/10.3390/ijms20092286
Li, J., Liu, X., Wang, Q., Sun, J., & He, D. (2021). Genome-wide identification and analysis of cystatin family genes in Sorghum (Sorghum bicolor (L.) Moench). PeerJ, 9(Group I), 1–24. https://doi.org/10.7717/peerj.10617
Li, J., Li, S., Han, B., Yu, M., Li, G., & Jiang, Y. (2013). A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnology for Biofuels and Bioproducts, 6(1), 1–12. https://doi.org/10.1186/1754-6834-6-174
Liu, F. H., & Yang, F. (2020). Male sterility induction and evolution of cytoplasmic male sterility related atp9 gene from Boehmeria nivea (L.) Gaudich. Industrial Crops and Products, 156(August), 112861. https://doi.org/10.1016/j.indcrop.2020.112861
Liu, J., Fernie, A. R., & Yan, J. (2020). The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Communications, 1(1), 1–19. https://doi.org/10.1016/j.xplc.2019.100010
Luo, J., Zhou, J. J., & Zhang, J. Z. (2018). Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19(1), 1–17. https://doi.org/10.3390/ijms19010259
Mace, E., Tai, S., Innes, D., Godwin, I., Hu, W., Campbell, B., … Jordan, D. (2014). The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 14(1), 1–14. https://doi.org/10.1186/s12870-014-0253-z
Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S., Cornell, S. E., … Woodward, G. (2014). Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 28(1), 289–297. https://doi.org/10.1016/j.gloenvcha.2014.07.009
Marone, D., Russo, M. A., Laidò, G., Leonardis, A. M., & Mastrangelo, A. M. (2013). Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. International Journal of Molecular Sciences, 14(4), 7302–7326. https://doi.org/10.3390/ijms14047302
Mizuno, H., Kasuga, S., & Kawahigashi, H. (2016). The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels and Bioproducts, 9(1), 1–12. https://doi.org/10.1186/s13068-016-0546-6
Ohta, T. (1990). How gene families evolve. Theoretical Population Biology, 37(1), 213–219. https://doi.org/10.1016/0040-5809(90)90036-U
Pandey, P., Singh, J., Achary, V. M. M., & Reddy, M. K. (2015). Redox homeostasis via gene families of ascorbate-glutathione pathway. Frontiers in Environmental Science, 3, 1–14. https://doi.org/10.3389/fenvs.2015.00025
Patil, G., Valliyodan, B., Deshmukh, R., Prince, S., Nicander, B., Zhao, M., … Nguyen, H. T. (2015). Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 16(1), 1–16. https://doi.org/10.1186/s12864-015-1730-y
Rai, K. M., Thu, S. W., Balasubramanian, V. K., Cobos, C. J., Disasa, T., & Mendu, V. (2016). Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) moench, a food, fodder, and biofuel crop. Frontiers in Plant Science, 7(AUG2016), 1–19. https://doi.org/10.3389/fpls.2016.01287
Reddy, P. S., Rao, T. S. R. B., Sharma, K. K., & Vadez, V. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28. https://doi.org/10.1016/j.plgene.2014.12.002
Sattler, S. E., Singh, J., Haas, E. J., Guo, L., Sarath, G., & Pedersen, J. F. (2017). Two distinct waxy alleles impact the granule-bound starch synthase in sorghum. Molecular Breeding, 24(4), 349–359. https://doi.org/10.1007/s11032-009-9296-5
Singh, R. K., Jaishankar, J., Muthamilarasan, M., Shweta, S., Dangi, A., & Prasad, M. (2016). Genome-wide analysis of heat shock proteins in C 4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Scientific Reports, 6(6), 1–14. https://doi.org/10.1038/srep32641
Tran, L. T., Taylor, J. S., & Constabel, C. P. (2012). The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics, 13(1), 1–12. https://doi.org/10.1186/1471-2164-13-395
Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., … Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969–976. https://doi.org/10.1038/nbt.3943
Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., … Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional and Integrative Genomics, 10(4), 533–546. https://doi.org/10.1007/s10142-010-0174-3
White, G. M., Hamblin, M. T., & Kresovich, S. (2004). Molecular Evolution of the Phytochrome Gene Family in Sorghum: Changing Rates of Synonymous and Replacement Evolution. Molecular Biology and Evolution, 21(4), 716–723. https://doi.org/10.1093/molbev/msh067
Zhang, D., Li, J., Compton, R. O., Robertson, J., Goff, V. H., Epps, E., … Paterson, A. H. (2015). Comparative Genetics of seed size traits in divergent cereal lineages represented by sorghum (Panicoidae) and Rice (Oryzoidae). G3: Genes, Genomes, Genetics, 5(6), 1117–1128. https://doi.org/10.1534/g3.115.017590
Zheng, L. Y., Guo, X. Sen, He, B., Sun, L. J., Peng, Y., Dong, S. S., … Jing, H. C. (2011). Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology, 12(11), 1–15. https://doi.org/10.1186/gb-2011-12-11-r114
Copyright (c) 2023 ASB Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.