Maize genetic breeding for tolerance to abiotic stress with focus on sustainable use of environmental resources
Abstract
This bibliographic review explored maize genetic breeding to increase tolerance to abiotic stress. The main stresses faced by the crop, such as water stress and nitrogen deficiency, and their negative impacts on grain yield were discussed. Strategies to minimize these effects were examined, focusing on the selection of tolerant genotypes and the strategic positioning of these genotypes in different growing environments. The germplasm bank and genetic diversity were highlighted as crucial resources to identify desirable traits and genes associated with resistance to abiotic stress. The selection of secondary characters, considering their heritability and correlation with characters of interest, allows maximizing the efficiency in the selection of promising genotypes in genetic breeding programs. Test environments simulating stresses, such as water stress and low nitrogen, are essential to evaluate the performance of genotypes and identify the most tolerant ones. The genetic breeding of maize for tolerance to abiotic stress promotes promising solutions to face environmental challenges and ensure the sustainability of agricultural production.
Downloads
References
Abu, P., Badu-Apraku, B., Ifie, B. E., Tongoona, P., Melomey, L. D., & Offei, S. K. (2021). Genetic diversity and inter-trait relationship of tropical extra-early maturing quality protein maize inbred lines under low soil nitrogen stress. PlosOne, 16(6), e0252506. https://doi.org/10.1371/journal.pone.0252506
Badu-Apraku, B., Fakorede, M. A. B., Badu-Apraku, B., & Fakorede, M. A. B. (2017). Inbred and hybrid maize development: experiences in Sub-Saharan Africa. In: Badu-Apraku, B., & Fakorede, M. A. B. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. p. 111-137. Springer Nature. https://doi.org/10.1007/978-3-319-64852-1_6
Banziger, M., Edmeades, G. O., Beck, D.L., & Bellon, M.R. (2000). Breeding for drought and nitrogen stress tolerance in maize. From Theory to Practice. Mexico: CIMMYT.
Baretta, D., Nardino, M., Carvalho, I. R., Pelegrin, A. J. D., Ferrari, M., Oliveira, V. F. D., Szareski, V. J., Oliveira, A. C., Barros, W. S., Souza, V. Q., & Maia, L. C. D. (2019). Heterosis and genetic distance in intervarietal corn hybrids. Pesquisa Agropecuária Brasileira, 54, e00265. https://doi.org/10.1590/S1678-3921.pab2019.v54.00265
Benchikh-Lehocine, M., Revilla, P., Malvar, R. A., & Djemel, A. (2021). Response to selection for reduced anthesis-silking interval in four algerian maize populations. MDPI - Agronomy, 11(2), 382. https://doi.org/10.3390/agronomy11020382
Bernini, C. S., Santos, F. A. S., Silva, D. S., & Figueiredo, Z. N. (2020). Phenotypic selection of maize hybrids for environments of low latitude and water deficit. Nativa: Pesquisas Agrárias e Ambientais, 8(2), 172-177. https://doi.org/10.31413/nativa.v8i2.9265
Carvalho, I. R., Szareski, V. J., Mambrin, R. B., Ferrari, M., Pelegrin, A. J., da Rosa, T. C., Peter, M., Silveira, D. C., Conte, G. G., Barbosa, M. H., & de Souza, V. Q. (2018). Biometric models and maize genetic breeding: A review. Australian Journal of Crop Science, 12(11), 1796-1805. https://doi.org/10.21475/ajcs.18.12.11.p792
Carvalho, I. R., Souza, V., Follmann, D., Nardino, M., & Schmidt, D. (2014). Desempenho agronômico de híbridos de milho em ambiente irrigado e sequeiro. Enciclopédia Biosfera, 10(18). https://conhecer.org.br/ojs/index.php/biosfera/article/view/2739
Carvalho, I. R., Pelegrin, A. D., Szareski, V. J., Ferrari, M., Rosa, T. D., Martins, T. S., Santos, N. L., Nardino, M., Souza, V. Q., Oliveira, A. C., & Maia, L. D. (2017). Diallel and prediction (REML/BLUP) for yield components in intervarietal maize hybrids. Genetics and Molecular Research, 16, 1-12. https://doi.org/10.4238/gmr16039734
Carvalho, I. R., Silva, J. A. G., Loro, M. V., Sarturi, M. V. R., Hutra, D. J., Port, E. D., & Lautenchleger, F. (2022). Canonical interrelationships in morphological characters, yield and nutritional components of corn. Agronomy Science and Biotechnology, 8, 1-17. https://doi.org/10.33158/ASB.r143.v8.2022
CONAB - Companhia Nacional de Abastecimento. (2023). Acompanhamento da safra brasileira de grãos 2022/2023. Brasília, DF: CONAB.
Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento genético. (3rd ed.). Viçosa, MG: Editora UFV.
Das, R. R., Vinayan, M. T., Seetharam, K., Patel, M., Phagna, R. K., Singh, S. B., Shahi, J. P., Sarma, A., Barua, N. S., Babu, R., & Zaidi, P. H. (2021). Genetic gains with genomic versus phenotypic selection for drought and waterlogging tolerance in tropical maize (Zea mays L.). The Crop Journal, 9(6), 1438-1448. https://doi.org/10.1016/j.cj.2021.03.012
Emygdio, B. M., Ignaczak, J. C., & Cargnelutti Filho, A. (2007). Potencial de rendimento de grãos de híbridos comerciais simples, triplos e duplos de milho. Revista Brasileira de Milho e Sorgo, 6, 95-103. http://dx.doi.org/10.18512/1980-6477/rbms.v6n1p95-103
Facchinello, P. H. K., Carvalho, I. R., Streck, E. A., Aguiar, G. A., Goveia, J., Feijó, M., Pereira, R. R., Fagundes, P. R. R., Loro, M. V., Maia, L. C., & Júnior, A. M. M. (2023). Genetic trends and multivariate interrelationships for grain quality of irrigated rice genotypes. Agronomy Science and Biotechnology, 9, 1–16. https://doi.org/10.33158/asb.r192.v9.2023
Ertiro, B. T., Beyene, Y., Das, B., Mugo, S., Olsen, M., Oikeh, S., Juma, C., Labuschagne, M., Prasanna, B. M., & Prasanna, B. M. (2017). Combining ability and testcross performance of drought‐tolerant maize inbred lines under stress and non‐stress environments in Kenya. Plant breeding, 136(2), 197-205. https://doi.org/10.1111/pbr.12464
Hallauer, A. R., Carena, M. J., & Miranda, J. B. (2010). Quantitative genetics in maize breeding. LLC, New York: Springer Science Business Media.
Karasawa, M. M. G., Botega, V. T., Pinto, J. E. B. P., Lédo, F. J. S., Pereira, A. Vander, & Pinto, J. C. (2023). Effects of thermotherapy and meristem culture on forage production and nutrition value in elephant grass cultivars. Agronomy Science and Biotechnology, 9, 1–24. https://doi.org/10.33158/asb.r176.v9.2023
Katsenios, N., Sparangis, P., Leonidakis, D., Katsaros, G., Kakabouki, I., Vlachakis, D., & Efthimiadou, A. (2021). Effect of genotype× environment interaction on yield of maize hybrids in Greece using AMMI analysis. Agronomy, 11(3), 479. https://doi.org/10.3390/agronomy11030479
Khatibi, A., Omrani, S., Omrani, A., Shojaei, S. H., Mousavi, S. M. N., Illés, Á., Bojtor, C., & Nagy, J. (2022). Response of maize hybrids in drought-stress using drought tolerance indices. Water, 14(7), 1012. https://doi.org/10.3390/w14071012
Laudien, R., Schauberger, B., Makowski, D., & Gornott, C. (2020). Robustly forecasting maize yields in Tanzania based on climatic predictors. Scientific reports, 10(1), 19650. https://doi.org/10.1038/s41598-020-76315-8
Lima, D. C., Leon, N., & Kaeppler, S. M. (2022). Utility of anthesis–silking interval information to predict grain yield under water and nitrogen limited conditions. Crop Science, 63(1), 151-163. https://doi.org/10.1002/csc2.20854
Lima, R., & Borém, A. (2018). Melhoramento de Milho. Viçosa, MG: Editora UFV.
Lizaso, J. I., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J. A., Lorite, I. J., Sánchez, D., García, E., & Rodríguez, A. (2018). Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 216, 129-140. https://doi.org/10.1016/j.fcr.2017.11.013
Maazou, A. R. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences, 7(14), 1858. http://dx.doi.org/10.4236/ajps.2016.714172
Mahadevaiah, C., Hapase, P., Sreenivasa, V., Hapase, R., Swamy, H. M., Anilkumar, C., Mohanraj, K., Hemaprabha, G., & Ram, B. (2021). Delineation of genotype x environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane. Scientific Reports, 11(1), 18649. https://doi.org/10.1038/s41598-021-98002-y
Masuka, B., Araus, J. L., Das, B., Sonder, K., & Cairns, J. E. (2012). Phenotyping for abiotic stress tolerance in maize. Journal of Integrative Plant Biology, 54(4), 238-249. https://doi.org/10.1111/j.1744-7909.2012.01118.x
Melo, A. V., Santos, V. M., Varanda, M. A. F., Cardoso, D. P., & Dias, M. A. R. (2018). Agronomic performance of maize genotypes subjected to water stress in the south of Tocantins State. Revista Brasileira de Milho e Sorgo, 17(2), 177-189. https://doi.org/10.18512/1980-6477/rbms.v17n2p177-189
Nardino, M., Carvalho, I. R., Baretta, D., Follmann, D. N., Leschewitz, R., Olivoto, T., Caron, B. O., Oliveira, A. C., Maia, L. C., & Souza, V. Q. (2016b). Cycle segregation in crossings of landrace maize populations. International Journal of Current Research, 8, 37896-37900.
Nardino, M., Baretta, D., Carvalho, I. R., Olivoto, T., Follmann, D. N., Pelegrin, A., Szareski, V. J.; Lautenchleger, F., Rosa, T. C., Barbosa, M. H., Konflanz, V. A., Barros, W. S., & Souza, V. D. (2018). Environment stratification in the evaluation of corn hybrids in Southern Brazil. Journal of Agricultural Science, 10, 333-342. https://doi.org/10.5539/jas.v10n10p333
Nardino, M., Baretta, D., Carvalho, I. R., Olivoto, T., Souza, V. Q., Konflanz, V. A., Oliveira, A. C., & Maia, L. C. (2016a). Mixed models to characterize adaptability, stability and yield of hybrid maize. Australian Journal of Basic and Applied Sciences, 10, 290-299.
Ndlovu, N., Spillane, C., McKeown, P. C., Cairns, J. E., Das, B., & Gowda, M. (2022). Genome-wide association studies of grain yield and quality traits under optimum and low-nitrogen stress in tropical maize (Zea mays L.). Theoretical and Applied Genetics, 135(12), 4351-4370. https://doi.org/10.1007/s00122-022-04224-7
Nieh, S. C., Lin, W. S., Hsu, Y. H., Shieh, G. J., & Kuo, B. J. (2014). The effect of flowering time and distance between pollen source and recipient on maize. GM Crops & Food, 5(4), 287-295. https://doi.org/10.4161%2F21645698.2014.947805
Parajuli, S., Ojha, B. R., & Ferrara, G. O. (2018). Quantification of secondary traits for drought and low nitrogen stress tolerance in inbreds and hybrids of maize (Zea mays L.). Journal of Plant Breeding and Genetics, 2(1), 1-12.
Rosa, T. C. D., Carvalho, I. R., Szareski, V. J., Pelegrin, A. J. D., Barbosa, M. H., Santos, N. L. D., ... & Souza, V. Q. D. (2018). Agronomic performance and multivariate analysis applied to three-waycross maize hybrids. Journal of Agricultural Science, 10(5), 319. https://doi.org/10.5539/jas.v10n5p319
Ruiz, M. B., D’Andrea, K. E., & Otegui, M. E. (2019). Phenotypic plasticity of maize grain yield and related secondary traits: Differences between inbreds and hybrids in response to contrasting water and nitrogen regimes. Field Crops Research, 239, 19-29. https://doi.org/10.1016/j.fcr.2019.04.004
Santos, L. A., Barbosa, B. S., Pinto, C. C., Szareski, V. J., Carvalho, I. R., Pimentel, J. R., Troyjack, C., Rosa, T. C., Koch, F., Dubal, Í. T. P., Santos, A. K. C. F., Schuch, L. O. B., Martinazzo, E. G., Pedó, T., & Aumonde, T. Z. (2024). Initial growth and chlorophyll indices of maize plants originating from seeds of different shapes and sizes. Agronomy Science and Biotechnology, 10, 1–16. https://doi.org/10.33158/asb.r194.v10.2024
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C, Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1), 2944. https://doi.org/10.1038/s41598-020-59689-7
Sarturi, M. V. R., Teixeira, C. A. M. B., Carvalho, I. R., Demari, G. H., Loro, M. V., Pradebon, L. C., & Port, E. D. (2022). Prediction of corn grain productivity as a function of altitude and plant population. Revista de Agricultura Neotropical, 9(4), e7070. https://doi.org/10.32404/rean.v9i4.7070
Savicki, A. D. M., Carvalho, I. R., Loro, M. V., Pradebon, L. C., Schmidt, A. L., Sfalcin, I. C., Schulz, A. D., Machado, P. P. N., Alchieri, A. C., Silva, J. A. G., Alban, A. A., & Challiol, M. A. (2023). Positioning of white oat cultivars in different environments for high grain productivity in organic system. Tropical and Subtropical Agroecosystems, 26, 1-12. http://dx.doi.org/10.56369/tsaes.4405
Sayed, K. A., Ali, M. B., Ibrahim, K. A., Kheiralla, K. A., & EL-Hifny, M. Z. (2022). Response of flowering traits to water stress in yellow maize (Zea mays L.) using line × tester analysis. Egyptian Journal of Agronomy, 44(2), 131-161. https://doi.org/10.21608/agro.2022.155493.1331
Shojaei, S. H., Mostafavi, K., Bihamta, M. R., Omrani, A., Mousavi, S. M. N., Illés, Á., Bojtor, C., & Nagy, J. (2022). Stability on maize hybrids based on GGE biplot graphical technique. MDPI - Agronomy, 12(2), 394. https://doi.org/10.3390/agronomy12020394
Silva, K. C. L., Santos, W. F., Afférri, F. S., Peluzio, J. M., & Sodré, L. F. (2019). Diversidade genética em genótipos de milho de plantio tardio sob diferentes níveis de nitrogênio no Tocantins. Revista de Agricultura Neotropical, 6(3), 92-100. https://doi.org/10.32404/rean.v6i3.2327
Song, L., Jin, J., & He, J. (2019). Effects of severe water stress on maize growth processes in the field. Sustainability, 11(18), 5086. http://dx.doi.org/10.3390/su11185086
Storck, L., Cargnelutti Filho, A., Lopes, S. J., Toebe, M., & Silveira, T. R. (2009). Duration of the sowing-flowering sub-period, plant growth and productivity of maize under contrasting climatic conditions. Revista Brasileira de Milho e Sorgo, 8(1), 27-39.
Szareski, V. J., Carvalho, I. R., Kehl, K., Levien, A. M., Rosa, T. C. D., & Souza, V. Q. D. (2021). Adaptability and stability with multivariate definition of macroenvironments for wheat yield in Rio Grande do Sul. Pesquisa Agropecuária Brasileira, 56, 1-6. https://doi.org/10.1590/S1678-3921.pab2023.v58.02863
Teixeira, F. F., & Trindade, R. S. (2021). Recursos genéticos de milho: importância e uso no melhoramento. Revista Ifes Ciência, 7(3), 01-22. https://doi.org/10.36524/ric.v7i3.1488
Treter, R. J. R., Furlan, R. D. P., Carvalho, I. R., Pradebon, L. C., Sangiovo, J. P., Sfalcin, I. C., Loro, M. V., Silva, J. A. G., Alban, A. A., Challiol, M. A., & Ferreira, L. L. (2023). Agronomic performance of white oats in organic system in the northwest region of Rio Grande do Sul. Agronomy Science and Biotechnology, 9, 1–11. https://doi.org/10.33158/asb.r189.v9.2023
Troyjack, C., Pimentel, J. R., Carvalho, I. R., Szareski, V. J., Junior, G. T., Dubal, Í. T. P., Demari, G. H., Lautenchleger, F., Martins, A. B. M., Villela, F. A., Aumonde, T. Z., & Pedó, T. (2019). Productive performance and multivariate interrelations of open-pollinated and hybrid maize in Brazil. Genetics and Molecular Research, 18(3). https://doi.org/10.4238/gmr18180
Valadares, F. V., Almeida, R. N. D., Silva, L. R. E., Santos, G. R., Pirovani, R. O. L., Souza Neto, J. D. D., Berillo, A. P. C. G., Moulin, M. M., Vivas, M., Berilli, S. S., & Pereira, M. G. (2021). Reciprocal recurrent selection for obtaining water-deficit tolerant maize progeny. Ciência Rural, 52, e20210162. https://doi.org/10.1590/0103-8478cr20210162
Zaidi, P. H., Shahid, M., Seetharam, K., & Vinayan, M. T. (2022). Genomic regions associated with salinity stress tolerance in tropical maize (Zea Mays L.). Frontiers in Plant Science, 13, 869270. https://doi.org/10.3389/fpls.2022.869270
Zambrano, J. L., Yánez, C. F., & Sangoquiza, C. A. (2021). Maize breeding in the highlands of Ecuador, Peru, and Bolivia: a review. MDPI - Agronomy, 11(2), 212. https://doi.org/10.3390/agronomy11020212
Zewdu, Z., Abebe, T., Mitiku, T., Worede, F., Dessie, A., Berie, A., & Atnaf, M. (2020). Performance evaluation and yield stability of upland rice (Oryza sativa L.) varieties in Ethiopia. Cogent Food & Agriculture, 6(1), 1842679. https://doi.org/10.1080/23311932.2020.1842679
Zia, S., Romano, G., Spreer, W., Sanchez, C., Cairns, J., Araus, J. L., & Müller, J. (2013). Infrared thermal imaging as a rapid tool for identifying water‐stress tolerant maize genotypes of different phenology. Journal of Agronomy and Crop Science, 199(2), 75-84. https://doi.org/10.1111/j.1439-037X.2012.00537.x
Ziyomo, C., & Bernardo, R. (2013). Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Science, 53(4), 1269-1275. https://doi.org/10.2135/cropsci2012.11.0651
Copyright (c) 2023 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.