Multivariate approach applied to phenotypic traits as a function of the selection of soybean cultivars

  • Eduardo Ely Foleto Universidade Regional do Noroeste do Rio Grande do Sul
  • Ivan Ricardo Carvalho Universidade Regional do Noroeste do Rio Grande do Sul
  • Alexandre Kaue Foguesatto Ottonelli Universidade Regional do Noroeste do Rio Grande do Sul
  • José Antonio Gonzalez Silva Universidade Regional do Noroeste do Rio Grande do Sul
  • Gerusa Massuquini Conceição Universidade Regional do Noroeste do Rio Grande do Sul
  • Willyan Júnior Adorian Bandeira Universidade Regional do Noroeste do Rio Grande do Sul
  • Gabriel Mathais Weimer Bruinsma Universidade Regional do Noroeste do Rio Grande do Sul
  • Jaqueline Piasanti Sangiovo Universidade Regional do Noroeste do Rio Grande do Sul
Keywords: Glycine max, compound of yield, vegetable protein, biofuel production, similarity indices, quantitative trait

Abstract

The objective of this work was to identify superior soybean cultivars through a multivariate approach applied to phenotypic traits. This study was developed in the 2023/2024 agricultural harvest, in the experimental area of ​​the Regional Institute for Rural Development, at UNIJUÍ. It is located in the municipality of Augusto Pestana, in the state of Rio Grande do Sul, Brazil. The experimental design used was randomized blocks with internal blocks, with the treatment being ten cultivars and five replications. The trial of ten cultivars in the northwest of the state of Rio Grande do Sul demonstrated that the soybean cultivar with the highest yield was NS5922IPRO, with 5235.3 kg ha-1. The multivariate approaches formed two groups to explain the factors that influenced yield, where the first was discrepant for the variables Euschistus heros, phytotoxicity, Fusarium solanie, Macrophomina phaseolina, Conyza bonariensis, production zone area, number of total nodes in the branch, branch number, root length, number of vegetables with 4 grains, number of vegetables with 0 grains and vegetable grain weight of 2 grains. The second similar group for the variables Diabrotica speciosa, Caliothrips brasiliensis, Euschisthus heros, Phakopsora pachyrhizi and Cercospora sojina, area of ​​production zone, number of vegetables with zero grains. The trial of ten cultivars in the northwest of the state of Rio Grande do Sul demonstrated that the soybean cultivar with the highest yield was NS5922IPRO, with 5235.3 kg ha-1. The multivariate approaches formed two groups to explain the factors that influenced grain yield.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Ely Foleto, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Ivan Ricardo Carvalho, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Alexandre Kaue Foguesatto Ottonelli, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

José Antonio Gonzalez Silva, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Gerusa Massuquini Conceição, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Willyan Júnior Adorian Bandeira, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Gabriel Mathais Weimer Bruinsma, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

Jaqueline Piasanti Sangiovo, Universidade Regional do Noroeste do Rio Grande do Sul

Departamento de Estudos Agrários

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2014). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

Amorim, L., Rezende, J. A. M., Bergamin Filho, A., & Camargo, L. E. A. (2016). Phytopathology Manual:Diseases of Cultivated Plants, (vol.2, 5th ed.). São Paulo, SP: Editora Agronômica Ceres.

Araújo, E. C., Uribe-Opazo, M. A., & Johann, J. A. (2013). Cluster analysis of the spatial variability of soybean productivity and agrometeorological variables in the western region of Paraná. Engenharia Agrícola, 33(4), 782-795. https://doi.org/10.1590/S0100-69162013000400018

Campos, A. J. M., Santos, S. M., & Nacarath, I. R. F. F. (2021). Water stress in plants: a review. Research, Society and Development,10(15), e311101523155- https://doi.org/10.33448/rsd-v10i15.23155

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Biometric models applied to genetic improvement. (3rd ed,). Viçosa, MG: Editora da UFV.

Destro, D.; Carpentieri-Pípolo, V.; Kiihl, R. A. S. & Almeida, L. A. (2001). Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breeding and Applied Biotechnology, 1(1), 72-92.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2011). Soybean production technologies - Central region of Brazil 2012 and 2013. Sistemas de Produção, 15. Londrina, PR: Embrapa Soja.

FAO – Food and Agriculture Organization. (2023). FAOSTAT: Agricultural production. Rome, Italy: FAOSTAT. Access in: May, 2024. Available in: http://faostat.fao.org/.

Ferrari, E., Paz, A., & Silva, A. C. (2015). Water deficit in soybean metabolism in early sowing in Mato Grosso. Nativa3(1), 67-77. https://doi.org/10.14583/2318-7670.v03n01a12

Fortes, C. T., Basso, F. J. M., Galon, L., Agazzi, L. R., Nonemacher, F., & Concenço, G. (2017). Competitive ability of transgenic soybean cultivars coexisting with weeds. Brazilian Journal of Agricultural Sciences. 12(2), 185-193.

França-Neto, J. D. B.; Krzyzanowski, F. C.; Henning, A. A.; Pádua, G. P.; Lorini, I.; Henning, F. A. (2016). High quality soybean seed production technology. Brasília, DF: Infoteca/Embrapa.

Gazzoni, D. L., & Dall'agnol, A. (2018). A saga da soja: de 1050 aC a 2050 dC. Londrina, PR: Embrapa Soja.

Lima, M. D., & Peluzio, J. M. (2015). Genetic dissimilarity in soybean cultivars focusing on the fatty acid profile aiming to produce biofuel. Brazilian Journal of Agricultural Sciences, 10(2), 256-261.

Maia, M. C. C., Araújo, L. B. D., Dias, C. T. D. S., Oliveira, L.C.D., Vasconcelos, L. F. L., Carvalho, E.V. D., Simeão, M., & Bastos, Y. G. M. (2016). Selection of mango osa genotypes in a breeding population using the multivariate-biplot method. Rural Science, 46(10), 1689-1694. https://doi.org/10.1590/0103-8478cr20130722

Minuzzi, R. B., Frederico, C. A., & Silva, T. G. F. (2017). Estimation of soybean agronomic performance in climatic scenarios for Southern Brazil. Revista Ceres, 64(6), 567-573. https://doi.org/10.1590/0034-737X201764060002

NASA POWER – NASA Prediction of Worldwide Energy Resources. (2023). Prediction of Worldwide Energy Resource Applied Science Program. Hampton, VA, USA: NASA POWER. Available at: < https://power.larc.nasa.gov/docs/>

Neumaier, N., Farias, J. R. B., Nepomuceno, A. L., Mertz-Henning, L. M., Foloni, J., Moraes, L. A. C., & Gonçalves, S. (2020). Soybean ecophysiology. In: SEIXAS, C. D. S., Neumaier, N., Balbinot Junior, A. A., Krzyzanowski, F. C., Leite, R. M. V. B. C. (Eds.). Tecnologias de produção de soja. (pp. 33-54). Londrina, PR: Embrapa Soja.

Paiva, M. S., Nagano, M. S., & Hongyu, K. (2019). Analysis of soybean expansion: An application of multivariate analysis and artificial neural networks. Sigmae, 8(2), 554-563.

R Core Team - A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Silva, F., Sediyama, T., & Borém, A. (2015). Soybeans from planting to harvesting. Viçosa, MG: Editora UFV.

Takahashi, A., Bedregal, B. R. C., & Lyra, A. (2005). An Interval Version of the Image Segmentation Method Using K-means. Trends in Computational and Applied Mathematics, 6(2), 315-324.

Thomas, A. L., & Costa, J. A. (2010). Development of the soybean plant and grain yield potential. Soy: management for high grain productivity. p. 13-33.

Val, B. H. P., Júnior, J. A. F., Bizari, E. H., Mauro, A. O., & Trevisoli, S. H. U.(2014). Genetic diversity of soybean genotypes through agromorphological characters. Science & Technology, v.6, p.72-83.

Vasconcellos, M. C., Corassa, J. D. N., Pitta, R. M., & Rolim, G. G. (2023). Pest control strategies in soybeans and their implications for the arthropod community and crop profitability. Nativa, 11(1), 28-43.

Vianna, V. F., Trevisoli, S. H. U., Desidério, J. A., Santiago, S. D., Charnai, K., Júnior, J. A. F., & Mauro, A. D. (2013). The multivariate approach and influence of characters in selecting superior soybean genotypes. African Journal of Agricultural Research, 8(30), 4162-4169. https://doi.org/10.5897/AJAR2013.7064

Published
2024-10-07
How to Cite
Foleto, E. E., Carvalho, I. R., Ottonelli, A. K. F., Silva, J. A. G., Conceição, G. M., Bandeira, W. J. A., Bruinsma, G. M. W., & Sangiovo, J. P. (2024). Multivariate approach applied to phenotypic traits as a function of the selection of soybean cultivars. Agronomy Science and Biotechnology, 10, 1-16. https://doi.org/10.33158/ASB.r205.v10.2024

Most read articles by the same author(s)

1 2 > >>