Germination of chief fire seeds cockscomb cultivar under saline stress conditions induced by sodium chloride
Abstract
Cockscomb plant, Chief fire cultivar, is used as an ornamental, medicinal and non-conventional food plant (NCFP) and is cultivated from the north to the center-west of Brazil; however, these areas suffer from adverse environmental factors such as salinity stress. The objective of this study was to evaluate the seed germination performance and vigor of Celosia cristata L. var. Chief Fire seedlings exposed to salinity during the germination phase. To carry out the work, C. cristata seeds were sown in gerboxes conditioned to increasing doses of sodium chloride (NaCl), obtained by dissolving the salt in distilled water, obtaining electrical conductivities of 2.0; 4.0; 6.0 and 8.0 dS.m-1, constituting the treatments. An additional group was treated only with distilled water and was used as a control for the experiment. The experiment was conducted in a completely randomized design, with a total of five treatments and four replicates of 25 seeds. The parameters assessed were: first germination count, germination, germination speed index (GVI), mean germination time (MGT), length of aerial part and primary root. The data was submitted to analysis of variance and the means were compared using the Scott-Knott test at 5% significance. Based on the results obtained, it can be concluded that the conditions of salt stress induced by NaCl were not harmful to the germination of C. cristata, presenting itself as a species tolerant to water salinity during seed germination, since the variables analyzed showed no signs of deleterious effects as the salt concentration was increased.
Downloads
References
Almeida, C. D. S., Guariz, H. R., Pinto, M. A. B., & Almeida, M. F. D. (2020). Germination of creole maize and fava bean seeds under salt stress. Revista Caatinga, 33(3) 853-859. https://doi.org/10.1590/1983-21252020v33n329rc
Araujo Neto, A. C., Nunes, R. T. C., Queiroz, R. C., Moreira, G. L. P., & José, A. R. S. (2020). Germination and initial growth of Vigna unguiculata (L.) Walp. under salt stress. Journal of Agricultural Sciences, 43(3) 283–292. https://doi.org/10.19084/rca.18510
Benedito, C. P., Ramalho, L. B., Pereira, K. T. O., Silva, K. C. N., & Medeiros, H. L. S. (2020). Hydropriming of Piptadenia moniliformis Benth. seeds and its effects on tolerance to salt stress conditions. Ciência Florestal, 30(1), 221–230. https://doi.org/10.5902/1980509829998
Carvalho, N. M., & Nakagawa, J. (2012). Seeds: science, technology, and production. (5th ed.). Jaboticabal, SP: FUNEP
Cruz, F. R. S., Andrade, L. A., & Alves, E. U. (2016). Salt stress on the physiological quality of Cryptostegia madagascariensis Bojer ex Decne seeds. Forest Science, 26(4) 1189–1199. https://doi.org/10.5902/1980509825110
Dan, L. G. M., Dan, H. A., Barroso, A. L. L., & Braccini, A. L. (2010). Physiological quality of soybean seeds treated with insecticides under the effect of storage. Brazilian Seed Magazine, 32(2), 131-139. https://doi.org/10.1590/S0101-31222010000200016
Dexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3-4), 201-214. https://doi.org/10.1016/j.geoderma.2003.09.004
FAO - Food and Agriculture Organization of the United Nations. (2020). Standard operating procedure for saturated soil paste extract. Rome. Italy: FAO. Retrieved from https://www.fao.org/documents/card/en?details=CB3355EN
Ferreira, E. G. B. S., Matos, V. P., Sena, L. H. M., Oliveira, R. G., & Sales, A. G. F. A. (2013). Germination process and vigor of Cedrela odorata L. seeds under salt stress. Forest Science, 23(1) 99–105. https://doi.org/10.5902/198050988444
Freitas, A. R., Lopes, J. C., Matheus, M. T., Mengarda, L. H. G., Venancio, L. P., & Caldeira, M. V. W. (2013). Overcoming dormancy in jatobá seeds. Pesquisa Florestal Brasileira, 33(73), 01-05. https://doi.org/10.4336/2013.pfb.33.73.350
Freitas, A. G. S., Sales, J.R.S., Pinto, C.M., Pinto, O.R.O., Silva, L. G. C., & Lacerda, C.F. (2024). Emergence and growth of Celosia argentea L. cultivated under irrigation with brackish waters. Ornamental Horticulture, 30, e242661. https://doi.org/10.1590/2447-536X.v30.e242661
Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography, 29(2), 189-217. https://doi.org/10.1191/0309133305pp443ra
Peña, R. J. H., Medina-Hernández, D., Ghasemi, M., & Puente, E. O. R. (2020). Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biológica Colombiana, 26(1) 116–126. https://doi.org/10.15446/abc.v26n1.82412
IBRAFLOR - Instituto Brasileiro De Floricultura. (2024). Flowers in numbers. Holambra, SP: IBRAFLOR. Retrieved from: https://www.ibraflor.com.br/numeros-setor
Labouriau, L. G. (1983). The germination of seeds. Washington: United States: General Secretariat of the Organization of American States [Regional Program for Scientific and Technological Development].
Leite, J. V. Q., Fernandes, P. D., Oliveira, W. J., Souza, E. R., Santos, D. P, & Santos, C. S. (2017). Effect of salt stress and the ionic composition of irrigation water on morphophysiological variables of cowpea. Revista Brasileira de Agricultura Irrigada, 11(6) 1825-1833. http://dx.doi.org/10.7127/rbai.v11n600630
Lorenzi, H., & Souza, H. M. (2015). Plants for gardens in Brazil: herbaceous, shrubby, and climbing plants. (2nd ed.). Nova Odessa: Plantarum.
Ludwig, E. J., Silva, J. R., Bastiani, G. G.., Stefanello, R., Nunes, U. R., & Heldwein, A. B. (2023). Physiological responses in seeds and seedlings of canola treated with thiamethoxam and subjected to salt stress. Revista em Agronegócio e Meio Ambiente, 16(3) 1–12. https://doi.org/10.17765/2176-9168.2023v16n3e10093
Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation of seedling emergence and vigour. Crop Science, 2(1) 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033
Marcos Filho, J. (2015). Seed physiology of cultivated plants. (2th ed.). Londrina, PR: ABRATES.
MAPA - Ministério da Agricultura, Pecuária e Abastecimento. (2009). Rules for seed analysis. (2th ed.). Brasília, DF: MAPA/ACS - Secretaria de Defesa Agropecuária.
Molehin, O. R., Adefegha, S. A., Oboh, G., Saliu, J. A., Athayde, M. L., & Boligon, A. A. (2014). Comparative study on the phenolic content, antioxidant properties and HPLC fingerprinting of three varieties of Celosia species. Journal of Food Biochemistry, 38(6):575–83. https://doi.org/10.1111/jfbc.12090
Murtaza, G., Ghafoor, A., & Qadir, M. (2006). Irrigation and soil management strategies for using saline-sodic water in a cotton–wheat rotation. Agricultural Water Management, 81(1-2): 98–114. https://doi.org/10.1016/j.agwat.2005.03.003
Pacheco, A. G., Almeida, C. A. C., Dias, M. S., Reis, L. S., Elias, J. J., Pinto, A. V. F., Leite, M. J. H., & Silva, T. S. S. (2020). Germination and initial growth of sunflower (Helianthus annuus L.) under different substrates subjected to salt stress. Brazilian Journal of Development, 6(9), 71281–71296. https://doi.org/10.34117/bjdv6n9-537
Paiva, P. D. O., & Almeida, E. F. A. (2014). Production of cut flowers. (2th ed.). Lavras, MG: UFLA - Federal University of Lavras.
Pedrotti, A. (2015). Causes and consequences of soil salinization process. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 19(2): 1308-1324. https://doi.org/10.5902/2236117016544
Richards, L.A. (1980). Saline and Sodic Soils. (6th ed.). Porto Velho, RO: Limusa.
Santana, M. J., Carvalho, J. A., Souza, K. J., Sousa, A. M. G., & Vasconcelos, L. F. L. (2017). Germination and growth of melon cultivars under salt stress. Engenharia na Agricultura, 25(3) 204–217. https://doi.org/10.13083/reveng.v25i3.781
Spadeto, C., Lopes, J. C., Mengarda, L. H. G., Matheus, M. T., & Bernardes, P. M. (2012). Salt and water stress on the germination of garapa seeds (Apuleia leiocarpa (Vogel.) JF Macbr.). Enciclopédia Biosfera, 8(14) 539–551. https://doi.org/10.13140/RG.2.1.1753.0001.
Copyright (c) 2024 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.