Influence of nitric oxide donor on the physiological quality of seeds of Myrcia retorta Cambess
Abstract
Brazil, with its vast biodiversity, is home to several species of the Myrtaceae family with significant ornamental potential that is still underutilized. Myrcia retorta Cambess is a endemic Brazilian plant wich stands out as a promising species for ornamental cultivation. The objective of this study was to evaluate the effect of the nitric oxide donor S-nitrosoglutathione (GSNO) on the germination of M. retorta seeds, with the aim of optimizing germination conditions for the domestication of this species. The seeds were divided into two batches based on their morphology: Batch 1 (spherical seeds) and Batch 2 (flattened seeds). The seeds were treated with five concentrations of GSNO (0, 2.5, 5, 10, and 15 mM) and the parameters evaluated included germination percentage, shoot and root length, and time to stabilization of germination. In batch 1, doses of 2.5 mM and 5 mM GSNO resulted in faster germination stabilization (6 and 7 days, respectively) compared to the control (9 days). In addition, these doses increased germination percentage by 15% and 12%, respectively. However, higher concentrations (10 mM and 15 mM) were found to be phytotoxic, reducing shoot length by 30% and 45% and root length by 28% and 42%, respectively. In batch 2, although no statistically significant differences were observed, a trend towards reduced germination and growth with increasing GSNO doses was observed. It is concluded that GSNO positively affects the germination and initial development of M. retorta at low concentrations, especially in spherical seeds, suggesting its potential in the domestication process of the species for ornamental purposes. However, doses higher than 5 mM should be avoided due to toxicity risks, highlighting the need to optimize concentrations for practical application.
Downloads
References
Boucelha, L., & Djebbar, R. (2015). Influence de différents traitements de prégermination des graines de Vigna unguiculata (L.) Walp. sur les performances germinatives et la tolérance au stress hydrique. Biotechnology, Agronomy, Society and Environment, 19(2), 160-172.
Cascaes, M. M., Guilhon, G. M. S. P., Andrade, E. H. A., Zoghbi, M. G. B., & Santos, L. S. (2015). Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants. International Journal of Molecular Sciences, 16, 23881-23904. doi: 10.3390/ijms161023881
Corpas, F. J., & Palma, J. M. (2018). Assessing nitric oxide (NO) in higher plants: An outline. MDPI - Nitrogen, 1, 12-20. https://doi.org/10.3390/nitrogen1010003
Ferreira, N., & Maria, M. (2013). Germinação de sementes e morfologia de plântula de Myrcia cuprea (O. Berg) Kiaersk. (Myrtaceae), espécie da restinga com potencial de uso no paisagismo. Revista da Sociedade Brasileira de Arborização Urbana, 8(1), 27-38. https://doi.org/10.5380/revsbau.v8i1.66357
Gressler, E., Pizo, M. A., & Morellato, L. P. C. (2006). Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira de Botânica, 29(4), 509-530. https://doi.org/10.1590/S0100-84042006000400002
Lamarca, E. V., & Barbedo, C. J. (2014). Methodology of the tetrazolium test for assessing the viability of seeds of Eugenia brasiliensis Lam., Eugenia uniflora L., and Eugenia pyriformis Cambess. Journal of Seed Science, 36(4), 427-434. https://doi.org/10.1590/2317-1545v36n41029
Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., & Zhang, J. (2009). Nitric oxide‐induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 183(4), 1030-1042. https://doi.org/10.1111/j.1469-8137.2009.02899.x
Lorenzi, H. (2016). Árvores brasileiras: Manual de identificação e cultivo de plantas nativas. (vol. 2.). Nova Odessa, SP: Instituto Plantarum.
MAPA - Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília, DF: Mapa/ACS.
Mata-Pérez, C., Padilla, M. N., Sánchez-Calvo, B., Begara-Morales, J. C., Valderrama, R., Chaki, M., Aranda-Caño, L., Moreno-González, D., Molina-Díaz, A., & Barroso, J. B. (2020). Endogenous biosynthesis of S-nitrosoglutathione from nitro-fatty acids in plants. Frontiers in Plant Science, 11, 962. https://doi.org/10.3389/fpls.2020.00962
Monteiro, K. A., Baudraz, P. J. C., Shimizu, D. G., Ribeiro Júnior, W. A., Guariz, H. R., & Faria, R. T. (2023). Influence of nitric oxide donor nanoencapsulation on Dyckia excelsa Lema (Bromeliaceae) germination. Agronomy Science and Biotechnology, 9, 1-12. https://doi.org/10.33158/ASB.r174.v9.2023
Nabi, R. B. S., Tayade, R., Hussain, A., Kulkarni, K. P., Imran, Q. M., Mun, B. G., & Yun, B. W. (2019). Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 161, 120-133. https://doi.org/10.1016/j.envexpbot.2019.02.003
REFLORA - Flora e Funga do Brasil. (2024). Jardim Botânico do Rio de Janeiro. Available in: < http://floradobrasil.jbrj.gov.br/ >. Accessed in: Aug 13, 2024.
Saber, F. R., Munekata, P. E. S., Rizwan, K., El-Nashar, H. A. S., Fahmy, N. M., Aly, S. H., El-Shazly, M., Bouyahya, A., & Lorenzo, J. M. (2024). Family Myrtaceae: The treasure hidden in the complex/diverse composition. Critical Reviews in Food Science and Nutrition, 64(19), 6737-6755. https://doi.org/10.1080/10408398.2023.2173720
Signorelli, S., & Considine, M. J. (2018). Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy. Frontiers in Plant Science, 9, 296. https://doi.org/10.3389/fpls.2018.00296
Shimizu, G. D., Marubayashi, R. Y. P., and Gonçaves, L. S. A. (2022). AgroR: Experimental Statistics and Graphics for Agricultural Sciences. R package version 1.2.1. Retrieved from: https://cran.r-project. org/web/packages/AgroR/index.html.
RStudio - Studio Team (2020). Integrated Development for R. Boston, MA: RStudio, PBC. http://www.rstudio.com
Copyright (c) 2024 Agronomy Science and Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.