Physiological alterations and enzymatic evaluation of soybean cultivars under water deficit

  • Wellington Gomes Universidade do Estado de Minas Gerais https://orcid.org/0000-0003-0698-2079
  • Samy Pimenta Universidade Estadual de Montes Claros
  • Larissa Souza Amaral Universidade do Estado de Minas Gerais
  • Bruno Rafael Alves Rodrigues Universidade Estadual de Montes Claros
  • Aluízio Borém Universidade Federal de Viçosa https://orcid.org/0000-0003-1386-5903

Resumo

Drought is one of the main abiotic factors limiting agricultural productivity, capable of having a major impact on the yield of most crops. The knowledge of the physiological and biochemical mechanisms that differentiate resistance and susceptibility to water deficit among soybean strains can be used in the generation of more tolerant cultivars. In this sense, the objective of this study was to characterize physiologically, two soybean cultivars with different patterns of tolerance to drought in the field, by determining photosynthetic rates, lipid peroxidation levels and antioxidant enzyme activity under three levels of water potential. Upon reaching the V4 development stage, the irrigation of the plants was suspended and three data collection were performed: full irrigation (control); moderate water deficit (Ψ = -1.5 ± 0.2 MPa) and severe deficit (Ψ = -3.0 MPa ± 0.2 MPa). Variations in perspiration rate, stomatal conductance, as well as decrease in photosynthetic rate were significant between the two cultivars, where the water potentials in cultivar BR 16 anticipated on average two days achieving the same water potentials in Embrapa 48 cultivar, thus presenting better efficiency in water use. In addition, the increased activity of enzymes and lipid peroxidation were more significant in the cultivar BR 16, demonstrating that this cultivar is less tolerant to drought than Embrapa 48 cultivar, corroborating to agronomic data previously found in the field.

CROSSMARK_Color_horizontal.svg

Downloads

Não há dados estatísticos.

Referências

Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., �?� Ahmad, I. (2015). Lipids and proteins�??major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22(6), 4099�??4121. https://doi.org/10.1007/s11356-014-3917-1

Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., �?� Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(FEBRUARY), 1�??12. https://doi.org/10.3389/fpls.2017.00069

Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373�??399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Atkin, O. K., & Macherel, D. (2009). The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 103(4), 581�??597. https://doi.org/10.1093/aob/mcn094

Cilliers, M., Wyk, S. G., Heerden, P. D. R., Kunert, K. J., & Vorster, B. J. (2018). Identification and changes of the drought-induced cysteine protease transcriptome in soybean (Glycine max) root nodules. Environmental and Experimental Botany, 148, 59�??69. https://doi.org/10.1016/j.envexpbot.2017.12.005

Dray, S., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., Wagner, H.H. (2018). Adespatial: multivariate multiscale spatial analysis. R package version 0.2-0.

Escalera, R. A. V., Carvalho, I. R., Pimentel, J. R., Troyjack, C., Szareski, V. J., Jaques, L. B. A., �?� Pedó, T. (2021). Nodulation and agronomic performance of soybean grown in different seeding periods and glyphosate formulations. Agronomy Science and Biotechnology, 7, 1�??10. https://doi.org/10.33158/asb.r122.v7.2021

FAO - Food and Agriculture Organization of the United Nations. (2015). Towards a water and food secure future: critical perspectives for policy-makers. Rome, Italy. Retrieved from http://www.fao.org/home/en/

Ferreira, L. L., Ricardo Viana de Carvalho, P., Fernandes, M. de S., Silva, J. G., Ricardo Carvalho, I., & Lautenchleger, F. (2020). Neural network and canonical interrelationships for the physiological aspects of soybean seedlings: effects of seed treatment. Agronomy Science and Biotechnology, 6, 1�??11. https://doi.org/10.33158/asb.r116.v6.2020

Fried, H. G., Narayanan, S., & Fallen, B. (2019). Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits. PLoS ONE, 14(2), 1�??18. https://doi.org/10.1371/journal.pone.0212700

Gavili, E., Moosavi, A. A., & Haghighi, A. A. K. (2019). Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Industrial Crops and Products, 128(March 2018), 445�??454. https://doi.org/10.1016/j.indcrop.2018.11.047

Gomes, F. P. (1990). Curso de estatística experimental (12th ed.). Piracicaba, SP: Fealq.

Gomes-Junior, R. A., Moldes, C. A., Delite, F. S., Pompeu, G. B., Gratão, P. L., Mazzafera, P., �?� Azevedo, R. A. (2006). Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere, 65(8), 1330�??1337. https://doi.org/10.1016/j.chemosphere.2006.04.056

Gorthi, A., Volenec, J. J., & Welp, L. R. (2019). Stomatal response in soybean during drought improves leaf-scale and field-scale water use efficiencies. Agricultural and Forest Meteorology, 276�??277(June 2018), 107629. https://doi.org/10.1016/j.agrformet.2019.107629

Gontijo, W. D. R., Sousa, P. H. S., Matsuo, �?., Resende, J. C., Barros, P. H. F. C., & Bomtempo, G. L. (2021). Epicotyl length in seedlings of soybean cultivars subjected to reduced inter-row spacing. Agronomy Science and Biotechnology, 7, 1�??7. https://doi.org/10.33158/asb.r132.v7.2021

Gray, S. B., Dermody, O., Klein, S. P., Locke, A. M., McGrath, J. M., Paul, R. E., �?� Leakey, A. D. B. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2(9), 1�??8. https://doi.org/10.1038/nplants.2016.132

Guo, Y. Y., Tian, S. S., Liu, S. S., Wang, W. Q., & Sui, N. (2018). Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica, 56(3), 861�??872. https://doi.org/10.1007/s11099-017-0741-0

Heber, U. (2008). Photoprotection of green plants: A mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta, 228(4), 641�??650. https://doi.org/10.1007/s00425-008-0766-5

Hussain, M., Farooq, S., Hasan, W., Ul-Allah, S., Tanveer, M., Farooq, M., & Nawaz, A. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 201(February), 152�??166. https://doi.org/10.1016/j.agwat.2018.01.028

Iqbal, N., Hussain, S., Raza, M. A., Yang, C. Q., Safdar, M. E., Brestic, M., �?� Liu, J. (2019). Drought Tolerance of Soybean (Glycine max L. Merr.) by Improved Photosynthetic Characteristics and an Efficient Antioxidant Enzyme Activities Under a Split-Root System. Frontiers in Physiology, 10(July). https://doi.org/10.3389/fphys.2019.00786

Kar, M., & Mishra, D. (1976). Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiology, 57(2), 315�??319. https://doi.org/10.1104/pp.57.2.315

Khan, M. A., Tong, F., Wang, W., He, J., Zhao, T., & Gai, J. (2018). Analysis of QTL�??allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta, 248(4), 947�??962. https://doi.org/10.1007/s00425-018-2952-4

Langridge, P., & Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 32, 130�??135. https://doi.org/10.1016/j.copbio.2014.11.027

Liu, Y., Wu, Q., Ge, G., Han, G., & Jia, Y. (2018). Influence of drought stress on afalfa yields and nutritional composition. BMC Plant Biology, 18(1), 1�??9. https://doi.org/10.1186/s12870-017-1226-9

Longo, O. T., González, C. A., Pastori, G. M., & Trippi, V. S. (1993). Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant and Cell Physiology, 34(7), 1023�??1028. https://doi.org/10.1093/oxfordjournals.pcp.a078515

Manavalan, L. P., Guttikonda, S. K., Tran, L. S. P., & Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 50(7), 1260�??1276. https://doi.org/10.1093/pcp/pcp082

Mwenye, O. J., Rensburg, L., Biljon, A., & Merwe, R. (2018). Seedling Shoot and Root Growth Responses among Soybean (Glycine max) Genotypes to Drought Stress. In In Soybean-Biomass. Yield and Productivity. London, UK: IntechOpen. Retrieved from https://www.intechopen.com/books/soybean-biomass-yield-and-productivity/seedling-shoot-and-root-growth-responses-among-soybean-glycine-max-genotypes-to-drought-stress.

Peixoto, P. H. P., Cambraia, J., Sant�??Anna, R., Mosquim, P. R., & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologoia Vegetal, 11(3), 137�??143. Retrieved from http://www.cnpdia.embrapa.br/rbfv/pdfs/v11n3p137.pdf

Pimentel, J. R., Carvalho, I. R., Troyjack, C., Junior, G. T., Szareski, V. J., Conte, G. G., �?� Hutra, D. J. (2021). Water deficit in the soybean breeding. Agronomy Science and Biotechnology, 7, 1�??20. https://doi.org/10.33158/asb.r128.v7.2021

Queiroz, C. G. S., Alonso, A., Mares-Guia, M., & Magalhaes, A. C. (1998). Chilling induced changes in membrane fluidity and antioxidant enzyme activities in Coffea Arabica L. roots. Biologia Plantarum, 41(3), 403�??413. https://doi.org/10.1023/A:1001802528068

Qureshi, M. K., Munir, S., Shahzad, A. N., Rasul, S., Nouman, W., & Aslam, K. (2018). Role of reactive oxygen species and contribution of new players in defense mechanism under drought stress in rice. International Journal of Agriculture and Biology, 20(6), 1339�??1352. https://doi.org/10.17957/IJAB/15.0640

Ramírez, D. A., Querejeta, J. I., & Bellot, J. (2009). Bulk leaf δ18O and δ13C reflect the intensity of intraspecific competition for water in a semi-arid tussock grassland. Plant, Cell and Environment, 32(10), 1346�??1356. https://doi.org/10.1111/j.1365-3040.2009.02002.x

R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Sabagh, A. EL, Hossain, A., Islam, M. S., Barutcular, C., Fahad, S., Ratnasekera, D., �?� Saneoka, H. (2018). Role of osmoprotectants and soil amendments for sustainable soybean (Glycine max L.) production under drought condition: A review. Journal of Experimental Biology and Agricultural Sciences, 6(1), 32�??41. https://doi.org/10.18006/2018.6(1).32.41

Scheibe, R., Backhausen, J. E., Emmerlich, V., & Holtgrefe, S. (2005). Strategies to maintain redox homeostasis during photosynthesis under changing conditions. Journal of Experimental Botany, 56(416), 1481�??1489. https://doi.org/10.1093/jxb/eri181

Soares, A. M. S., & Machado, O. L. T. (2007). Defesa de plantas : Sinalização química e espécies reativas de oxigênio Plant Defense : chemical signaling and reactive oxygen species. Revista Trópica �?? Ciências Agrárias e Biológicas, 1(1), 9�??19.

Terzi, R., Güler, N. S., Güven, F. G., & Kadioglu, A. (2018). Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress. Archives of Biological Sciences, 70(3), 503�??511. https://doi.org/10.2298/ABS171218011T

Texeira, L. R., Braccini, A. L. E., Sperandio, D., Scapim, C. A., Schuster, I., & Viganó, J. (2008). Avaliação de cultivares de soja quanto à tolerância ao estresse hídrico em substrato contendo polietileno glicol. Acta Scientiarum - Agronomy, 30(2), 217�??223. https://doi.org/10.4025/actasciagron.v30i2.1731

Xu, C., Xia, C., Xia, Z., Zhou, X., Huang, J., Huang, Z., �?� Zhang, C. (2018). Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Reports, 37(12), 1611�??1624. https://doi.org/10.1007/s00299-018-2332-3

Ye, H., Song, L., Schapaugh, W. T., Ali, M. L., Sinclair, T. R., Riar, M. K., �?� Nguyen, H. T. (2020). The importance of slow canopy wilting in drought tolerance in soybean. Journal of Experimental Botany, 71(2), 642�??652. https://doi.org/10.1093/jxb/erz150

You, J., & Chan, Z. (2015). Ros regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6(DEC), 1�??15. https://doi.org/10.3389/fpls.2015.01092

Zhou, Y., Lam, H. M., & Zhang, J. (2007). Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5), 1207�??1217. https://doi.org/10.1093/jxb/erl291

Publicado
2021-07-12
Como Citar
Gomes, W., Pimenta, S., Amaral, L. S., Rodrigues, B. R. A., & Borém , A. (2021). Physiological alterations and enzymatic evaluation of soybean cultivars under water deficit. ASB Journal, 7, 1-10. https://doi.org/10.33158/ASB.r136.v7.2021
Seção
Artigos

##plugins.generic.recommendByAuthor.heading##