Influence of Nitric oxide donor nanoencapsulation on Dyckia excelsa Lema (Bromeliaceae) germination
Resumo
Bromeliads are used in landscaping due to the beauty of their leaves and flowers. The use of plant regulators such as nitric oxide (NO) promotes the stimulus of germination and it has been a way out to enhance production and reduce the search for plants in nature and nanoencapsulation aims to optimize its effect. The objective of this work was to evaluate the effect of using free and nanoencapsulated NO donor on the germination of D. excelsa. The treatments consisted of soaking the seeds for 5 minutes with s-nitrosoglutathione (GSNO), chitosan/sodium tripolyphosphate nanoparticles containing GSNO (NP CS/TPP-GSNO) and empty (NP CS/TPP) at doses: 15 mM and 20 mM. The control consisted of imbibition in distilled water. For each treatment, 4 replications of 50 seeds were used. The following variables were evaluated: percentage of germination (GER), first germination count (FGC), germination speed index (GSI), average germination time (AGT) in addition to the length (SL) and seedling dry weight (SDW). To characterize the seeds, water content and viability were evaluated. D. excelsa seeds had 9.9% water content and 64% viability. For GER, treatments with GSNO ranged from 43 to 60%. The application of GSNO stimulated the germination process of D. excelsa and the nanoencapsulation did not cause any difference in the results compared to the free GSNO. It was concluded that the application of 15 or 20 mM of the GSNO donor is recommended for stored seeds of D. excelsa.
Downloads
Referências
Anacleto, A., & Negrelle, R. R. B. (2019). Bromeliads supply chain of Paraná State-Brazil. International Journal of Advanced Engineering Research and Science, 6(2), 1-12. https://dx.doi.org/10.22161/ijaers.6.2.1b
Arc, E., Galland, M., Godin, B., Cueff, G., & Rajjou, L. (2013). Nitric oxide implication in the control of seed dormancy and germination. Frontiers in Plant Science, 4, 346. https://doi.org/10.3389/fpls.2013.00346
Badem, A., & Söylemez, S. (2022). Effects of nitric oxide and silicon application on growth and productivity of pepper under salinity stress. Journal of King Saud University-Science, 34(6), 102189. https://doi.org/10.1016/j.jksus.2022.102189.
Carvalho, D. U., Cruz, M. A., Osipi, E. A. F., Osipe, J. B., Colombo, R. C., & Cossa, C. A. (2019). Temperature on Annona cherimola Mill. x Annona squamosa L. seed germination. Agronomy Science and Biotechnology, 5(2), 40. https://doi.org/10.33158/asb.2019v5i2p40
Colombo, R. C., Favetta, V., & Faria, R. T. (2015). Cutting size in the vegetative propagation of Dendrobium nobile Lindl. Agronomy Science and Biotechnology, 1(2), 73. https://doi.org/10.33158/asb.2015v1i2p73
Frölech, D. B., Assis, A. M., Schuch, M. W., Barros, M. I. L. F., Nadal, M. C., & Oliveira, B. A. S. (2019). Chemical and sensorial analysis of blueberry nectar and juice. Agronomy Science and Biotechnology, 5(1), 32. https://doi.org/10.33158/asb.2019v5i1p32
Flores, R., Kraetzig, L. C., Flôres, P. Z., Pereira, D. N., Büneker, H. M., Maldaner, J., Viero, C. L., & Strahl, M. A. (2018). Propagation of Dyckia vicentensis, an endemic bromeliad of the Pampa biome, Brazil. Rodriguésia, 69, 2229-2235. https://doi.org/10.1590/2175-7860201869447
Guariz, H. R., Shimizu, G. D., Paula, J. C., Sperandio, H. V., Ribeiror Junior, W. A., Oliveira, H. C., Jussiani, E. I., Andrello, A. C., Marubayashi, R. Y. P., Picoli, M. H. S., Ruediger, J., Couto, A. P. S., & Moraes, K. A. M. (2022).
Anatomy and Germination of Erythrina velutina Seeds under a Different Imbibition Period in Gibberellin. Seeds, 1(3), 210-220. https://doi.org/10.3390/seeds1030018
Jahnová, J., Luhová, L., & Petřivalský, M. (2019). S-Nitrosoglutathione Reductase - The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants, 8(2), 1-19. https://doi.org/10.3390/plants8020048
Kohli, S. K., Khanna, K., Bhardwaj, R., Abd_Allah, E. F., Ahmad, P., & Corpas, F. J. (2019). Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants, 8(12), 641. https://doi.org/10.3390/antiox8120641
Krzyzanowski, F. C., França-Neto, J. de B., Gomes-Junior, F. G., & Nakagawa, J. (2020). Testes de vigor baseados em desempenho de plântulas. In Krzyzanowski, F. C., Vieira, R. D., & França Neto, J. B. (Eds.). Vigor de sementes: conceitos e testes (p. 1-24). Londrina: Abrates.
Labouriau, L. G., & Valadares, M. E. B. (1983). The germination of seeds. Calotropis procera, 174-86.
Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., & Zhang, J. (2009). Nitric oxide‐induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist, 183(4), 1030-1042. https://doi.org/10.1111/j.1469-8137.2009.02899.x
Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International journal of molecular sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996.
MAPA - Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília: MAPA/ACS, 399p.
Marcato, P. D., Adami, L. F., Barbosa, R. M., Melo, O. S., Ferreira, I. R., Paula, L., Duran, N., & Seabra, A. B. (2013). Development of a sustained-release system fornitric oxide delivery using alginate/chitosan nanoparticles. Current Nanoscience, 9 (1), 1-7. https://doi.org/10.2174/157341313805117848
Marialva, S. A. R., Lopes, M. T. G., Valente, M. S. F., & Chagas, E. A. (2019). Cruzability and genetic variability in seed characters of Amazonian pepper. Magistra, 30, 37-47.
Meng, Y., Jing, H., Huang, J., Shen, R., & Zhu, X. (2022). The Role of Nitric Oxide Signaling in Plant Responses to Cadmium Stress. International Journal of Molecular Sciences, 23(13), 6901. https://doi.org/10.3390/ijms23136901.
Paggi, G. M., Louzada, R. B., Ishii, I. H., Takahasi, A., Arruda, R. C. O., & Lorens-Lemke, A. P. (2015). Rediscovering Dyckia excelsa (Bromeliaceae) in Mato Grosso do Sul, Brazil: Taxonomy, Geographic Distribution, and Notes on Leaf Anatomy. Systematic Botany, 40, 129-135. https://doi.org/10.1600/036364415X686422
Paula, J. C. B., Men, G. B., Biz, G., Júnior, W. A. R., de Faria, R. T. (2020). Cryopreservation of seeds from endangered Brazilian bromeliads-Dyckia brevifolia Baker and D. delicata Larocca & Sobral. Revista Brasileira de Ciências Agrárias, 15(4), 1-8. https://doi.org/10.5039/agraria.v15i4a8439.
Pelegrino, M. T., Silva, L. C., Watashi, P. S., Haddad, T. R., & Seabra, A. B. (2017). Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells. Journal of Nanoparticle Research, 19 (57), 57-72. https://doi.org/10.1007/s11051-017-3747-4
Pereira, T. M., Santos, H. O. D., Cunha Neto, A. R. D., Pelissari, F., Pereira, W. V., & Melo, L. A. D. (2020). Does nitric oxide protect Eucalyptus urophylla seeds under salt stress conditions? Journal of Seed Science, 42. https://doi.org/10.1590/2317-1545v42236272
Pires, R. M. O., Souza, G. A., Cardoso, A. Á., Dias, D. C. F. S., & Borges, E. E. L. (2016). Action of nitric oxide in sesame seeds (Sesamum indicum L.) submitted to stress by cadmium. Journal of Seed Science, 38(1), 22-29. https://doi.org/10.1590/2317-1545v38n1154824
Rajanaidu, N., & Ainul, M. M. (2013). Conservation of oil palm and coconut genetic resources. In Normah, M., Chin, H., & Reed, B. (Eds.). Conservation of tropical plant species (p. 189-212). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-3776-5_10
R Core Team. R. (2022). A language and environment for statistical computing. Foundation for Statistical Computing. Available in:http://www.r-project.org
Reflora. (2022). Bromeliaceae in Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available in: <http://reflora.jbrj.gov.br/reflora/floradobrasil/FB66>. Accessed in: November 24, 2022
Roberto, S. R., Mashima, C. H., & Colombo, R. C. (2015). Phenological characterization and quality of fi ne ‘Black Star’ table grape. Agronomy Science and Biotechnology, 1(2), 77. https://doi.org/10.33158/asb.2015v1i2p77
Ruas, R. D. B., Paggi, G. M., Aguiar-Melo, C., Hirsch, L. D., & Bered, F. (2020). Strong genetic structure in Dyckia excelsa (Bromeliaceae), an endangered species found on ironstone outcrops in Pantanal, Brazil. Botanical Journal of the Linnean Society, 192(4), 691-705. https://doi.org/10.1093/botlinnean/boz099
Salmi, M. L., Clark, G., & Roux, S. J. (2013). Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. Frontiers in Plant Science, 4, 427. https://doi.org/10.3389/fpls.2013.00427
Sano, N., Permana, H., Kumada, R., Shinozaki, Y., Tanabata, T., Yamada, T., Hirasawa, T. & Kanekatsu, M. (2012). Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant and cell physiology, 53(4), 687-698. https://doi.org/10.1093/pcp/pcs024
Silva, A. L., Santos, D. C. F., Borges, E. E. D. L. E., Ribeiro, D. M., & Silva, L. J. (2015). Effect of sodium nitroprusside (SNP) on the germination of Senna macranthera seeds (DC. ex Collad.) HS Irwin & Baneby under salt stress1. Journal of Seed Science, 37(4), 236-243. https://doi.org/10.1590/2317-1545v41n1213725
Silva, J. A., Silva, I. R. F., Demartelaere, A. C. F., Medeiros, A. D., & Pereira, M. D. (2019). Physiological quality in Leucaena leucocephala seeds conditioned with potassium nitrate submitted to saline and water stresses. Journal of Experimental Agriculture International, 33(1), 1-9. https://doi.org/10.9734/JEAI/2019/v33i130132
Silveira, N. M., Frungillo, L., Marcos, F. C. C, Pelegrino, M. T., Miranda, M. T., Seabra, A. B., Salgado, I., Machado, E. C., & Ribeiro, R. V. (2016). Exogenous nitric oxide improves sugarcane growth and photosynthesis under water déficit. Planta, 244, 181-190. https://doi.org/10.1007/s00425-016-2501-y
Takane, R. J., Silva, C. F., Pereira, J. S., Takemura, C. M., Rosa, T. A. O., & Faria, R. T. (2020). Doses of bokashi in the growth of two basil cultivars. Agronomy Science and Biotechnology, 6, 1–9. https://doi.org/10.33158/asb.r113.v6.2020
Tamaki, V., Carvalho, C. P., Lazarini, R. A. M., & Nievola, C. C. (2020). Storage of seeds harvested from different positions of the floral scape to obtain imperial bromeliad plants - Alcantarea imperialis. Rodriguésia, 71. https://doi.org/10.1590/2175-7860202071144
WFO - World Flora Online. (2022). Published on the Internet; http://www.worldfloraonline.org. Accessed in: November 24, 2022.
Zucchi, M. R., Silva, M. W., Sibov, S. T., & Pires, L. L. (2019). Ornamental and landscape potential of a bromeliad native to the Cerrado. Ornamental Horticulture, 25(4), 425-433. https://doi.org/10.1590/2447-536X.v25i4.2003
Copyright (c) 2023 ASB Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.