Adaptability and phenotypic stability of soybean genotypes regarding epicotyl length using artificial neural network and non-parametric test

  • Jorge Cunha Resende Federal University of Viçosa, Rio Paranaíba, MG, Brazil
  • Éder Matsuo, PhD Institute of Technological and Exact Sciences, Federal University of Viçosa, Rio Paranaíba Campus, Biostatistics Laboratory, Highway MG 230, Km 7, PO Box 22, Rio Paranaiba, MG, Brazil, ZipCode 38810-000. https://orcid.org/0000-0002-2643-9367
  • Guilherme Ferreira Alves Federal University of Viçosa, Rio Paranaíba, MG, Brazil
  • Gustavo Lourenço Bomtempo Federal University of Viçosa, Rio Paranaíba, MG, Brazil
  • Moysés Nascimento Federal University of Viçosa, Viçosa, MG, Brazil https://orcid.org/0000-0001-5886-9540
  • Silvana Costa Ferreira Institute of Biological and Health Sciences, Federal University of Viçosa, Rio Paranaíba Campus, Highway MG 230, Km 7, PO Box 22, Rio Paranaiba, MG, Brazil, ZipCode 38810-000. https://orcid.org/0000-0002-5661-0794
Palavras-chave: Glycine max, artificial intelligence, biostatistics, genetic improvement, GxA interaction, morphological characters

Resumo

Genetic improvement together with statistics has contributed to the growth of the importance of soybean in Brazil. One of the contributions has been the launching of new cultivars in the national market, which requires, in its legal procedures for registration and protection, the verification of several tests, one of them being the distinguishability test. Several studies have reported that some phenotypic characters are potential in this distinction, one of them is the length of the epicotyl. In this work, the objective was to identify soybean genotypes that present low or high average, highly stable throughout the analyzed environments and that present adaptability to different environments. Two groups of experiments were conducted in a greenhouse to measure the epicotyl length of soybean plants submitted to different environments (planting season). The data obtained were analyzed using the analysis of individual variance, analysis of joint variance, Scott-Knott test and adaptability and stability through the Artificial Neural Network and non-parametric test. It can be concluded that the genotypes that showed low average for epicotyl length, wide adaptability or poor responsiveness to environmental improvements and stable over the seasons were TMG 1175 RR (in V2), BMX Tornado RR (in V2), BG 4272 (in V2), BRS283 (in V2 and V3) and FT-Cristalina (in V2 and V3). BRSMG 752 S (in V2 and V3), TMG 4185 (in V3) and BRSGO 7560 (in V3) behaved as high medium, high stability and wide adaptability. The genotypes BRS 8381, TMG 4185, MG/BR46_Conquista, BRSMG 850 GRR, BRS Valiosa RR and BG 4277 were stable and recommended for favorable environments.

Downloads

Não há dados estatísticos.

Referências

Alves, G. F., Nogueira, J. P. G., Machado Junior, R., Ferreira, S. C., Nascimento, M., & Matsuo, É. (2019). Stability of the hypocotyl length of soybean cultivars using neural networks and traditional methods. Ciência Rural, 49(3), e20180300. https://doi.org/10.1590/0103-8478cr20180300

Barroso, L. M. A., Nascimento, M., Nascimento, A. C. C., Silva, F. F., & Ferreira, R. P. (2013). Uso do método de EBERHART e RUSSELL como informação a priori para aplicação de redes neurais artificiais e análise discriminante visando a classificação de genótipos de alfafa quanto à adaptabilidade e estabilidade fenotípica. Revista Brasileira de Biometria, 31(2), 176-188.

Camargos, T. V. C., Campos, N. S., Alves, G. F., Ferreira, S. C., & Matsuo, É. (2019). The effect of soil volume, plant density and sowing depth on soybean seedlings characters. Agronomy Science and Biotechnology, 5(2), 47-58. https://doi.org/10.33158/ASB.2019v5i2p47

Carneiro, P. C. S. (1998). Novas metodologias de análise da adaptabilidade e estabilidade de comportamento. Tese de Doutorado em Genética e Melhoramento. Viçosa, MG: Universidade Federal de Viçosa.

Carvalho, L. P., Teodoro, P. E., Barroso, L. M. A., Farias, F. J. C., Morello, C. L., & Nascimento, M. (2018). Artificial neural networks classify cotton genotypes for fiber length. Crop Breeding and Applied Biotechnology, 18(2), 200–204. https://doi.org/10.1590/1984-70332018v18n2n28

Chaves, M. V. A., Silva, N. S., Silva, R. H. O., Jorge, G. L., Silveira, I. C., Medeiros, L. A., Hamawaki, R. L., Hamawaki, O. T., Nogueira, A. P. O., & Hamawaki, C. D. L. (2017). Genotype x environment interaction and stability of soybean cultivars for vegetative-stage characters. Genetics and Molecular Research, 16(3): gmr16039795. https://doi.org/10.4238/gmr16039795

Cruz, C. D. (2013). GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276. https://doi.org/10.4025/actasciagron.v35i3.21251

Cruz, C. D., & Carneiro, P. C. S. (2006). Modelos biométricos aplicados ao melhoramento genético. v. 2. (2nd ed.). Viçosa: UFV.

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. (4th ed.). Viçosa, MG: UFV.

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1): 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x

Embrapa Soja. Soja em números (safra 2019/20). (2021). Available in: https://www.embrapa.br/soja/cultivos/soja1/dados-economicos. June 08, 2021.

Fehr, W.R., & Caviness, C.E. (1977). Stages of soybean development. Ames, Iowa: Iowa State University of Science and Technology.

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in plant-breeding programme. Australian Journal of Agricultural Research, 14(5): 742-754. http://doi.org/10.1071/AR9630742

Gontijo, W. D. R., Sousa, P. H. S., Matsuo, É., Resende, J. C., Barros, P. H. F. C., & Bomtempo, G. L. (2021). Epicotyl length in seedlings of soybean cultivars subjected to reduced inter-row spacing. Agronomy Science and Biotechnology, 7, 1-7. https://doi.org/10.33158/ASB.r132.v7.2021

Gontijo, W. D. R., Matsuo, É., Evaristo, A. B., Cecon, P. R., Ferreira, S. C., & Reis, M. A. M. (2023). Analysis of morphological characters in soybean plants submitted to different levels of artificial shading. Agronomy Science and Biotechnology, 9, 1-16. https://doi.org/10.33158/ASB.r185.v9.2023

Hanyu, J., Costa, S. C., Cecon, P. R., & Matsuo, É. (2020). Genetic parameters estimate and characters analysis in phenotypic phase of soybean during two evaluation periods. Agronomy Science and Biotechnology, 6, 1-12. https://doi.org/10.33158/ASB.r104.v6.2020

Lin, C.S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68, 93-198.

Matsuo, É., Borém, A., & Sediyama, T. (2021b) Desenvolvimento de cultivares. In: Sediyama, T., Matsuo, É., & Borém, A. (Eds.). Melhoramento da Soja no Brasil. p. 93-102. Londrina, PR: Editora Mecenas.

Matsuo, É., Borém, A., Sediyama, T., & Ferreira, S.C. (2021a). Lei de Proteção de Cultivares. In: Sediyama, T., Matsuo, É., & Borém, A. (Eds.). Melhoramento da Soja no Brasil. p. 73-79. Londrina, PR: Editora Mecenas.

Matsuo, É., Dezordi, L. R., Nascimento, M., & Cruz, C. D. (2022) Adaptability and stability of soybean genotypes recommended for Alto Paranaíba in Minas Gerais. Scientia Agraria Paranaensis, 21(2), 169-177. https://doi.org/10.18188/sap.v21i2.29514

Matsuo, É., Sediyama, T., Cruz, C. D., & Oliveira, R. C. T. (2012b). Análise da repetibilidade em alguns descritores morfológicos para soja. Ciência Rural, 42(2), 189-196. https://doi.org/10.1590/S0103-84782012000200001

Matsuo, É., Sediyama, T., Cruz, C. D., Oliveira, R. C. T., & Cadore, L. R. (2012a). Estimates of the genetic parameters, optimum sample size and conversion of quantitative data in multiple categories for soybean genotypes. Acta Scientiarum. Agronomy, 34(3), 265-273. https://doi.org/10.4025/actasciagron.v34i3.14015

Nascimento, M., Nascimento, A.C.C., & Barroso, L.M.A. (2018). RNA - Aplicação em estudos de adaptabilidade e estabilidade fenotípica. In: Cruz, C.D., & Nascimento, M. (Eds.). Inteligência Computacional Aplicada ao Melhoramento Genético. p. 278-291. Viçosa, MG: Editora UFV.

Nascimento, M., Peternelli, L. A., Cruz, C. D., Nascimento, A. C. C., Ferreira, R. P., Bhering, L. L., & Salgado, C. C. (2013). Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes. Crop Breeding and Applied Biotechnology, 13(2), 152-156.

Nogueira, A. P. O., Sediyama, T., Cruz, C. D., Reis, M. S., Pereira, D. G., & Jangarelli, M. (2008). Novas características para diferenciação de cultivares de soja pela análise discriminante. Ciência Rural, 38(9), 2427-2433. https://doi.org/10.1590/S0103-84782008005000025

Oda, C. M., Sediyama, T., Cruz, D. C., Nascimento, M., & Matsuo, É. (2022). Adaptability and yield stability of soybean genotypes by mean eberhart and Russell methods, artificial neural networks centroid. Agronomy Science and Biotechnology, 8,1-13. https://doi.org/10.33158/ASB.r142.v8.2022

Oda, M. C., Sediyama, T., Matsuo, É., Nascimento, M., & Cruz, C. D. (2019). Estabilidade e adaptabilidade de produção de grãos de soja por meio de metodologias tradicionais e redes neurais artificiais. Scientia Agraria Paranaensis, 18(2), 117-124. https://e-revista.unioeste.br/index.php/scientiaagraria/article/view/21109

Oda, M. C., Sediyama, T., Matsuo, É., Cruz, C. D., Barros, E. G., & Ferreira, M. F. S. (2015). Phenotypic and molecular traits diversity in soybean launched in forty years of genetic breeding. Agronomy Science and Biotechnology, 1(1), 1. https://doi.org/10.33158/ASB.2015v1i1p1

Paixão, J. V. C. C., Matsuo, É., Sousa, I. C., Nascimento, M., Oliveira, I. S., Macedo, A. F., & Santana, G. M. (2023). Classification of soybean cultivars by means of artificial neural networks. Agronomy Science and Biotechnology, 9, 1-11. https://doi.org/10.33158/ASB.r186.v9.2023

Pimentel-Gomes, F. (1990). Curso de estatística experimental. (13th ed.). Piracicaba, SP: Nobel.

Pradebon, L. C., Carvalho, I. R., Sangiovo, J. P., Loro, M. V., Scarton, V. D. B., Port, E. D., Mallmann, G., Stasiak, G., Maciel, D. G., Lopes, P. F., & Carioli, G. (2023). Management tendencies and needs: a joint proposal to maximize soybean grain yield. Agronomy Science and Biotechnology, 9, 1-11. https://doi.org/10.33158/ASB.r187.v9.2023

R Development Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available in: http:// www.r-project.org

Sediyama, T. (2009). Tecnologias de produção e usos da soja. Londrina, PR: Editora Mecenas.

Silva, A. F., Silva, F. C. S., Bezerra, A. R., & Sediyama, T. (2021). Histórico, evolução e importância econômica da soja. In: Sediyama, T., Matsuo, É., & Borém, A. (Eds.). Melhoramento da Soja no Brasil. p. 13-21. Londrina, PR: Editora Mecenas.

Teodoro, P. E., Barroso, L. M. A., Nascimento, M., Torres, F. E., Sagrilo, E., Santos, A., & Ribeiro, L. P. (2015). Redes neurais artificiais para identificar genótipos de feijão-caupi semiprostrado com alta adaptabilidade e estabilidade fenotípicas. Pesquisa Agropecuária Brasileira, 50(11), 1054-1060. https://doi.org/10.1590/S0100-204X2015001100008

Venables, W. N., & Ripley, B.D. (2002). Modern Applied Statistics with S. New York: Springer.

Publicado
2023-07-18
Como Citar
Resende, J. C., Matsuo, PhD, Éder, Alves, G. F., Bomtempo, G. L., Nascimento, M., & Ferreira, S. C. (2023). Adaptability and phenotypic stability of soybean genotypes regarding epicotyl length using artificial neural network and non-parametric test. ASB Journal, 9, 1-14. https://doi.org/10.33158/ASB.r190.v9.2023
Seção
Artigos