Iron concentrations in the in vitro cultivation of native Brazilian orchid Schomburgkia crispa

  • Douglas Bertoncelli Universidade Estadual de Londrina
  • Guilherme Alves Universidade Estadual de Londrina
  • Gustavo Freiria Universidade Estadual de Londrina
  • Felipe Furlan Universidade Estadual de Londrina
  • Helio Neto Universidade Estadual de Londrina
  • Ricardo Faria Universidade Estadual de Londrina

Resumo

In vitro cultivation is a highly important biotechnological method widely used for the production of orchid seedlings, but it is necessary to study the suitability of the nutrients used in different kinds of formulation, as the nutritional requirement varies according to the species. The objective was to evaluate different concentrations of iron in the in vitro cultivation of Schomburgkia crispa Lindl seedlings. Seedlings were obtained from seeds germinated in vitro. Modified MS culture medium was used with half of the macronutrient concentration. The micronutrients were added according to the original formulation, except for the iron which was added from a stock solution of FeEDTA (FeSO4.7H2O: 5.6 g L-1 and EDTA: 7.48 g L-1) at 0.0; 2.5; 5.0; 7.5; 10.0 and 12.5mL L-1. At 200 days after seedling transplantation, shoot height, root length, number of leaves, shoot number, leaf length, leaf width, aerial and root dry mass, chlorophyll a, b and carotenoids content were evaluated. A completely randomized design was used, with six treatments and ten replicates of five seedlings. Regression analysis was performed at 5% of significance. The increase in iron concentration caused a reduction in root length and an increase in the number of leaves and shoots. The concentration of 4.13 mL L-1 of FeEDTA was the one that provided the best in vitro growth of S. crispa plants. High concentrations of iron caused a reduction of initial development, but stimulated an increase in the number of shoots.

Downloads

Não há dados estatísticos.

Biografia do Autor

Douglas Bertoncelli, Universidade Estadual de Londrina
Departamento de Agronomia
Guilherme Alves, Universidade Estadual de Londrina
Departamento de Agronomia
Gustavo Freiria, Universidade Estadual de Londrina
Departamento de Agronomia
Felipe Furlan, Universidade Estadual de Londrina
Departamento de Agronomia
Helio Neto, Universidade Estadual de Londrina
Departamento de Agronomia
Ricardo Faria, Universidade Estadual de Londrina
Departamento de Agronomia

Referências

Abadía J, Morales F and Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron- deficient leaves. Plant and Soil 215: 183-192.

Adamski JM, Peters JA, Danieloski R and Bacarin MA (2011) Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology 168: 2056-2062.

Becker M and Asch F (2005) Iron toxicity in rice - conditionsand management concepts. Journal of Plant Nutrition and Soil Science 168: 558-573.

Benckiser G, Santiago S, Neue HU and Ottow JCG (1984) Effect of iron fertilization on exudation activity, dehydrogenase activity, iron-reducing populations and Fe++ formation in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Plant and Soil 79: 305-316.

Bowler C, Montagu MV and Inzé D (1992) Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43: 83-116.

Centro Nacional de Conservação da Flora (CNCFlora) (2017) Lista vermelha. http://www.cncflora.jbrj.gov.br/portal/pt-br/listavermelha. Acessado 10 jan. 2017.

Chatterjee C, Gopal R and Dube BK (2006) Impact of iron stress on biomass, yield, metabolismo and quality of potato (Solanum tuberosum L.). Scientia Horticulturae 108: 1-6.

Fageria NK, Santos AB, Barbosa Filho MP and Guimarães CM (2008) Iron toxicity in lowland rice. Journal of Plant Nutrition 31: 1676-1697.

Fang WC, Wang JW, Lin CC and Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzyme activies in rice leaves. Plant Growth Regul 35: 75-80.

Hoshino RT, Alves GAC, Melo TR, Barzan RR, Fregonezi GAF and Faria RT (2016) Adubação mineral e orgânica no desenvolvimento de orquídea Cattlianthe 'Chocolate drop'. Horticultura Brasileira 34: 475-482.

Howeller RH (1973) Iron-induced oranging disease of rice in relation to physical-chemical changes in a flooded oxisol. Soil Science Society of America Proceedings 37: 898-903.

Jones HG (1973) The Genus Schomburgkia: A Study in the History and Bibliography of plant Taxonomy. Taxon 22: 229-239.

Jucoski GO, Cambraia J, Ribeiro C, Oliveira JA, Paula SO and Oliva MA (2013) Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L., plants. Acta Physiologia Plantarum 35: 1645-1657.

Jucoski GO, Cambraia J, Ribeiro C and Oliveira JA (2016) Excesso de ferro sobre o crescimento e a composição mineral em Eugenia uniflora L. Revista Ciência Agronômica 47: 720-728.

Kirkby EA and Römheld V (2007) Micronutrientes na fisiologia de plantas: funções, absorção e mobilidade. Informações Agronômicas: Encarte técnico 118, International plant nutrition institute, 24p.

Martini PC, Willadino L, Alves GD and Donato VMTS (2001) Propagação de orquídea Gongora quinquenervis por semeadura in vitro. Pesquisa Agropecuária Brasileira 36(10): 1319-1324.

Mehraban P, Zadeh AA and Sadeghipour HR (2008) Iron toxicity in rice (Oryza sativa L.), under diferente potassium nutrition. Asian Journal of Plant Nutrition 7: 251-259.

Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras TS and Nogueira PE (1998) Flora vascular do cerrado. In: Sano SM and Almeida SP (eds.) Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina, Brasília, p. 289-556.

Meschede DK, Velini ED, Carbonari CA and Silva JRM (2011) Alteração fisiológica da cana-de-açúcar pela aplicação de glyphosate e sulfumeturon-methyl. Planta Daninha 29: 413-419.

Mothé GPB (2012) Capacidade fotossintética e crescimento de dois genótipos de Ricinus communis L. em resposta a doses de material sólido particulado à base de ferro aplicadas ao solo. Dissertação, Universidade Estadual do Norte Fluminense Darcy Ribeiro.

Munekage Y and Shinakai T (2005) Cyclic eléctron transport through photosystem I. Plant Biotechnol 22: 361-369.

Murashige T and Skoog FA (1962) Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Nagao EO, Pasqual M and Ramos JD (1994) Efeitos da sacarose e do nitrogênio inorgânico sobre a multiplicação �??in vitro�?� de brotações de porta-enxerto de citros. Bragantia 53: 25-31.

Nenova VR (2009) Growth and photosynthesis of pea plants under different iron supply. Acta Physiologiae Plantarum 31: 385-391.

Robello E, Galatro A and Puntarulo S (2007) Iron role in oxidative metabolism of soybean axes upon growth effect of iron overload. Plant Science 172: 939-947.

Sahrawat KL (2004a) Iron toxicity in wetland rice and the role of other nutrients. Journal Plant Nutrition 27: 1471-1504.

Sahrawat KL (2004b) Elemental composition of rice plant as affected by iron toxicity under field conditions. Communications in Soil Science Plant Analysis 31: 2819-2827.

Schwalbert R, Maldaner J, Aita MF, Amaral GZ and Tarouco AK (2014) Concentrações de sais do meio MS no cultivo in vitro de Desmodium incanum. Enciclopédia Biosfera 10: 1009-1015.

Sharma S (2007) Adaptation of photosynthesis under iron deficiency in maize. Journal of Plant Physiology 164: 1261-1267.

Shikanai T (2007) Cyclic eléctron transport around photosystem I: genetic approaches. Annual Review Plant Biology 58: 199-217.

Siqueira-Silva AI, Silva LC, Azevedo AA and Oliva MA (2012) Iron plaque formation and morphoanatomy of roots from species of resting subjected to excess iron. Ecotoxicology and Environmental Safety 78: 265-275.

Sorace M, Damasceno Júnior CV, Gomes GP, Barbosa CM, Vieira FGN, Silva GL, Takahashi LSA and Schnitzer JA (2008) Crescimento in vitro de Oncidium baueri (Orchidaceae) em diferentes concentrações de macronutrientes e sacarose. Semina: Ciências Agrárias 29(4): 775-782.

Stancato GC, Bemelmans PF and Vegro CCLR (2001) Produção de mudas de orquídeas a partir de sementes in vitro e sua viabilidade econômica: estudo de caso. Revista Brasileira de Horticultura Ornamental 7(1): 25-33.

Stancato GC and Faria RT (1996) In vitro growthand mineral nutrition of the lithophytic orchid Laelia cinnabarina Batem (Orchidaceae): effects of macro and microelements. Lindleyana 11: 41-43.

Stein RJ, Duarte GL, Spohr MG, Lopes SIG and Fett JP (2008) Distinct physiological responses subjected to iron toxicity under field conditions. Annals of Applied Biology 154: 269-277.

Strasser RJ and Stirbet AD (1998) Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescencerise (O-J-I-P). Math Comput Simulat 48: 3-9.

Taiz L and Zeiger E (2013) Fisiologia vegetal, Tradução Divan Junior et al. Artmed, Porto Alegre, 918 p.

Timperio AM, D�??Amici GM, Barta C and Zolla L (2007) Proteomic, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. Journal of Experimental Botany 58: 3695-3710.

Whitham FH, Blaydes DF and Devlin RM (1971) Experiment in plant physiology. Van Nostrand Company, Reinhold, New York, p.236.

Publicado
2018-11-18
Como Citar
Bertoncelli, D., Alves, G., Freiria, G., Furlan, F., Neto, H., & Faria, R. (2018). Iron concentrations in the in vitro cultivation of native Brazilian orchid Schomburgkia crispa. ASB Journal, 4(2), 93. https://doi.org/10.33158/ASB.2018v4i2p93
Seção
Artigos

##plugins.generic.recommendByAuthor.heading##