Genetics, phosphorus and correlations in soybean yield

  • Luiz Leonardo Ferreira Universidade em Mineiros
  • Ivan Ricardo Carvalho Universidade Regional do Noroeste do Estado do Rio Grande do Sul
  • Murilo Vieira Loro Universidade Federal de Santa Maria
Keywords: Agricultural genetics, glycine max (L), multivariate analysis, phosphating, fertilization, correlation

Abstract

It is essential to select soybean genotypes with high yield and adaptability to the Cerrado Biome, mainly related to the supply of phosphorus. In soybeans, studies on correlations involving their characters with phosphate fertilization are insipient. The objective of this work was to evaluate the phenotypic correlations of soybean under different concentrations of phosphorus, aiming to improve the selection and identification of the most promising characters regarding the possibility of gains in grain yield. The study was conducted in Mineiros, Goiás, Brazil. The experimental design used was in randomized blocks in factorial corresponding to four soybean genotypes in five levels of phosphorus. The soil tillage system was carried out conventionally. The crop treatments relevant to the control of weeds and pests were carried out following the best practices of integrated pest management. At the end of the experiment, the data were submitted to multivariate analysis of variance. The treatments differed, mainly due to the number of grains per plant, where their similars were grouped in clusters. The correlations between the characters were significant and pointed to affinities, in addition to the potential explanation for the yield. It is concluded that genetic factor is largely responsible for the soybean yield indices, however, this was also influenced by the concentrations of triple super phosphate as a phosphate source. And that in order to increase the yield of the soybean crop it is necessary to reduce the stand and plant height, as well as to increase the average of pods with three grains, pods per plant and grains per plant.

Downloads

Download data is not yet available.

References

Bárbaro, I. M., Centurion, M. A. P. C., Di Mauro, A. O., Unêda-Trevisoli, S. H., Costa, M. M., Muniz, F. R. S., Silveira, G. D., & Sarti, D. G. P. (2007). Variabilidade e correlações entre produtividade de grãos e caracteres agronômicos de soja com aptidão para cultivo em áreas de reforma de canavial. Científica, 35(2), 136-145.

Batista, B. D., Lacava, P. T., Ferrari, A., Teixeira-Silva, N. S., Bonatelli, M. L., Tsui, S., Mondin, M., Kitajima, E. W., Pereira, J. O., Azevedo, J. L., & Quecine, M. C. (2018). Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological research, 206, 33-42. https://doi.org/10.1016/j.micres.2017.09.007.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. (3rd ed.). Brasília, DF: Embrapa Solos.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2009). Manual de métodos de análise de solo. Documentos, 1. (2nd ed. rev. atual.). Rio de Janeiro, RJ: EMBRAPA - CNPS.

Ferreira, L. L., Araujo, G. S., Carvalho, I. R., Santos, G. A., Fernandes, M. S., Carnevale, A. B., Curvelo, C. R. S., & Pereira, A. I. A. (2019a). Cause and Effect Estimates on Corn Yield as a Function of Tractor Planting Speed. Journal of Experimental Agriculture International, 41, 1-7. https://doi.org/10.9734/jeai/2019/v41i530417

Ferreira, L. L., Barbosa, H. Z., Carvalho, I. R., Prado, R. L. F., Curvelo, C. R. S., Pereira, A. I. A., Fernandes, M. S., & Carnevale, A. B. (2019b). Effect of Biostimulants in Late Seeding of Genotypes of Zea mays L. Journal of Experimental Agriculture International, 41, 1-9. https://doi.org/10.9734/jeai/2019/v41i630431

Kong, Y., Wang, B., Du, H., Li, W., Li, X., & Zhang, C. (2019). GmEXLB1, a soybean expansin-like B gene, alters root architecture to improve phosphorus acquisition in Arabidopsis. Frontiers in Plant Science, 10:808. https://doi.org/10.3389/fpls.2019.00808

Kurt, F., & Filiz, E. (2020). Biological Network Analyses of WRKY Transcription Factor Family in Soybean (Glycine max) under Low Phosphorus Treatment. Journal of Crop Science and Biotechnology, 23(2), 127-136. https://doi.org/10.1007/s12892-019-0102-0

Lopes, Â. C. D. A., Vello, N. A., Pandini, F., Rocha, M. D. M., & Tsutsumi, C. Y. (2002). Variabilidade e correlações entre caracteres em cruzamentos de soja. Scientia Agrícola, 59(2), 341-348. https://doi.org/10.1590/S0103-90162002000200021

Mambrin, R. B., Sausen, D., Moura, D., Carvalho, I. R., Szareski, V. J., & Conte, G. G. (2021). Phosphorus nutrition in beans. Communications in Plant Sciences, 11, 046-056. https://doi.org/10.26814/cps2021006

Moura, N. B., Carvalho, I. R., Hutra, D. J., Furlan, R. D. P., Mallmann, G., Stasiak, G., Maciel, D. G., Melo, W. L. F., Lopes, P. F., & Lautenchleger, F. (2021). Quali-Quantitative Genetic Dissimilarity of Soybean. Functional Plant Breeding Journal, 3(1): 59-70. http://dx.doi.org/10.35418/2526-4117/v3n1a6

Olivoto, T., Lúcio, A. D., da Silva, J. A., Sari, B. G., & Diel, M. I. (2019). Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agronomy Journal, 111(6), 2961-2969. https://doi.org/10.2134/agronj2019.03.0221

Ono, F. B., Montagna, J., Novelino, J. O., Serafim, M. E., Dallasta, D. C., & Garbiate, M. V. (2009). Eficiência agronômica de superfosfato triplo e fosfato natural de Arad em cultivos sucessivos de soja e milho. Ciência e Agrotecnologia, 33(3), 727-734. https://doi.org/10.1590/S1413-70542009000300010

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rao, R. C. (1952). Advanced statistical methods in biometric research. New York: J. Wiley.

Rosa, T. D. A., Carvalho, I. R., Szareski, V. J., Lautenchleger, F., Nadal, A. P., Gadotti, G. I., Costa, C. J., & Villela, F. A. (2019). Phosphate fertilization and inter-relationships of the agronomic and physiological characters of amaranth seeds. Colloquium Agrariae, 15(6): 63-72. https://doi.org/10.5747/ca.2019.v15.n6.a337

Sausen, D., Carvalho, I. R., Neis, F. A., Uliana, S. C., Mambrin, R. B., Schwalbert, R., & Frari, B. K. (2022). Time of potato plant harvest in soilless cultivation for screening phosphorus use efficient genotypes. Communications in Plant Sciences, 12: 1-6. http://dx.doi.org/10.26814/cps2022001

Sausen, D., Carvalho, I. R., Tavares, M. D. S., Schorr, M. R. W., Mambrin, R. B., Alves, J. D. S., Tarouco, C. P., Lúcio, A. D., Lautenchleger, F., & Nicoloso, F. T. (2021). Efficiency of phosphorus use in potato clones in two contrasting growing seasons. Australian Journal of Crop Science, 15(1), 93-97. https://doi.org/10.21475/ajcs.21.15.01.2818

Sha, A., Qi, Y., Shan, Z., Chen, H., Yang, Z., Qiu, D., Zhou, X., Chen, Y., & Tang, J. (2016). Identifying patellin-like genes in Glycine max and elucidating their response to phosphorus starvation. Acta physiologiae plantarum, 38(6), 138. https://doi.org/10.1007/s11738-016-2162-2

Shapiro, S. S., & Wilk, M. B. (1981). Analysis of variance test for normality. Biometrika. 1(1): 591-611.

Singh, D. (1981). The relative importance of characters affecting genetic divergence. The Indian Journal of Genetics and Plant Breeding, 41, 237-245.

Singh, S. K., Reddy, V. R., Fleisher, D. H., & Timlin, D. J. (2019). Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis. Frontiers in plant science, 9, 1116. https://doi.org/10.3389/fpls.2018.01116

Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: a biometrical approach. (3rd ed.). New York: Columbia.

Szareski, V. J., Carvalho, I. R., Demari, G. H., Rosa, T. C. D., Souza, V. Q. D., Villela, F. A., Pedó, T., & Aumonde, T. Z. (2018). Multivariate index of soybean seed vigor: a new biometric approach applied to the effects of genotypes and environments. Journal of Seed Science, 40(4), 396-406. https://doi.org/10.1590/2317-1545v40n4198333

Uzokwe, V. N., Asafo‐Adjei, B., Fawole, I., Abaidoo, R., Odeh, I. O., Ojo, D. K., Dashiell, K., & Sanginga, N. (2017). Generation mean analysis of phosphorus‐use efficiency in freely nodulating soybean crosses grown in low‐phosphorus soil. Plant Breeding, 136(2), 139-146. https://doi.org/10.1111/pbr.12453

Woyann, L. G., Meira, D., Zdziarski, A. D., Matei, G., Milioli, A. S., Rosa, A. C., Madella, L. A., & Benin, G. (2019). Multiple-trait selection of soybean for biodiesel production in Brazil. Industrial Crops and Products, 140, 111721. https://doi.org/10.1016/j.indcrop.2019.111721

Zhang, J., Zhou, X., Xu, Y., Yao, M., Xie, F., Gai, J., Li, Y., & Yang, S. (2016). Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Science, 248, 82-91. https://doi.org/10.1016/j.plantsci.2016.04.010

Zuffo, A. M., Steiner, F., Aguilera, J. G., Teodoro, P. E., Teodoro, L. P. R., & Busch, A. (2020). Multi‐trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6), 815-822. https://doi.org/10.1111/jac.12409

Published
2022-08-12
How to Cite
Ferreira, L. L., Carvalho, I. R., & Loro, M. V. (2022). Genetics, phosphorus and correlations in soybean yield. Agronomy Science and Biotechnology, 8, 1-11. https://doi.org/10.33158/ASB.r168.v8.2022

Most read articles by the same author(s)

1 2 3 > >>