Phosphorus fertilizer placement and rate affect soybean root growth and nutrient uptake in soil with high fertility
Abstract
O manejo do fertilizante fósforo (P) pode alterar o crescimento da raiz e da parte aérea da soja, promovendo desequilíbrios morfológicos na planta. Com o objetivo de avaliar os ajustes morfológicos da soja (Glycine max (L.)) em diferentes colocações e taxas de adubação fosfatada em solo P, foi realizado um estudo em casa de vegetação com dois objetivos principais: 1) avaliar o efeito da adubação fosfatada sobre a raiz e acúmulo de biomassa na parte aérea e as alterações associadas no comprimento das raízes; e, 2) estimar o efeito das alterações do crescimento radicular na absorção de macro e micronutrientes na planta. Os tratamentos com fertilizantes foram: (1) transmissão P na superfície do solo (BR), (2) P5x5 cm (B) aplicada na faixa (B) e (3) banda profunda P a 20 cm de profundidade (DB); usando duas taxas: (1) 60 e (2) 120 kg P2O5 ha-1 em solo com alta fertilidade. Imagens de minirhizotron e medidas de SPAD foram realizadas uma vez por semana até o florescimento. O peso seco da raiz e da parte aérea, bem como a absorção total de macro e micronutrientes foram avaliados no mesmo estágio. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja.Downloads
References
Abel S (2011) Phosphate sensing in root development. Current Opinion Plant Biology 14: 303-309.
Anghinoni I and Barber SA (1980) Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agronomy Journal 72: 685-688.
Barber SA and Silverbush M (1984) Plant root morphology and nutrient uptake. In: Barber SA, Bouldin DR, Kral DM and Hawkins SL (eds.) Roots, Nutrient and Water Influx, and Plant Growth. ASA Specia. American Society of Agronomy, Madison, WI. p. 65-88.
BassiriRad H, Gutschick VP and Lussenhop J (2001) Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO2. Acta Oecologia 126: 305-320.
Bender RR, Haegele JW and Below FE (2015) Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agronomy Journal 107: 563-573.
Borkert CM and Barber SA (1985) Soybean Shoot and Root Growth and Phosphorus Concentration as Affected by Phosphorus Placement. Soil Science Society of America Journal 49: 152-155.
Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytologist 75: 479-490.
Chapman SC and Barreto HJ (1997) Using a Chlorophyll Meter to Estimate Specific Leaf Nitrogen of Tropical Maize during Vegetative Growth. Agronomy Journal 89:557-562.
Eissenstat DM and Yanai RD (1997) The Ecology of Root Lifespan. Advances in Ecological Research 27: 1-60.
Frank K, Beegle D and Denning J (1998) Phosphorus. In: Brown JR (ed.), Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn, Columbia, Missouri. p. 21-30.
Gieseking JE, Snider HJ and Getz CA (1935) Destruction of organic matter in plant material by the use of nitric and perchloric acid. Industrial & Engineering Chemistry Analytical 7: 185-186.
Hansel FD, Amado TJC, Bortolotto RP, Trindade BS and Hansel DSS (2014) Influence of different phosphorus sources on fertilization efficiency. Applied Research & Agrotecnology 7: 103-111.
Hansel FD, Ruiz Diaz DA, Amado TJC and Rosso LHM (2017a). Deep Banding Increases Phosphorus Removal by Soybean Grown under No-Tillage Production Systems. Agronomy Journal 109: 1-8.
Hansel FD, Amado TJC, Ruiz Diaz DA, Rosso LHM, Nicoloso FT and Schorr M (2017b) Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agronomy Journal 109: 1091-1099.
Hendry GAF and Price AH (1993) Stress indicators: chlorophylls and carotenoids. In: Hendry GAF and Grime JP (eds.) Methods in Comparative Plant Ecology. Chapman & Hall, London. p. 148-152.
Hermans C, Hammond JP, White PJ and Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11: 610-617.
Hoskins B (2002) Organic Matter by Loss on Ignition. University of Maine.
Iwasa Y and Roughgarden J (1984) Shoot/root balance of plants: Optimal growth of a system with many vegetative organs. Theoretical Population Biology 25: 78-105.
Lindner RC and Harley CP (1942) A Rapid Method for the Determination of Nitrogen in Plant Tissue. Science 96: 565-566.
López-Bucio J, Cruz-Ramírez A and Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Current Opinion Plant Biology 6: 280-287.
Lynch JP and Brown KM (2001) Topsoil foraging - An architectural adaptation of plants to low phosphorus availability. In Plant and Soil. p. 225-237.
Ma BL, Morrison MJ and Voldeng HD (1994) Leaf Greenness and Photosynthetic Rates in Soybean. Crop Science Society of America 35: 1411-1414.
Marschner H, Kirkby E and Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal Experimental Botany 47: 1255-1263.
Mendiburu F (2010) Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.0-9. Accessed December 18, 2016. http://CRAN.R-project.org/package=agricolae
Muller M and Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiology 134: 409-419.
Nacry P (2005) A Role for Auxin Redistribution in the Responses of the Root System Architecture to Phosphate Starvation in Arabidopsis. Plant Physiology 138: 2061-2074.
Nunes RS, Sousa DMG, Goedert WJ and Vivaldi LJ (2011) Distribuição de fósforo no solo em razão do sistema de cultivo e manejo da adubação fosfatada. Revista Brasileira de Ciencia do Solo 35: 877-888.
Pedersen P (2003) Soybean Growth and Development. Iowa State University Extension Publication. Iowa State University, Ames, IA.
Péret B, Clément M, Nussaume L and Desnos T (2011) Root developmental adaptation to phosphate starvation: Better safe than sorry. Trends in Plant Science 16: 442-450.
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P and Mommer L (2011) Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. Phytologist 193: 30-50.
R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Salisbury FB and Ross CW (1992) Plant physiology. 4th. ed. Belmont, CA. Wadsworth.
Shipley B and Meziane D (2002) The balance-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16: 326-331.
Sun C-H, Yu J-Q and Hu D-G (2017) Nitrate: A Crucial Signal during Lateral Roots Development. Frontiers in Plant Science 8: 485.
Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y and Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant Journal 64: 775-789.
Thornley JHM (1972) A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants. Annals of Botany 36: 431-441.
Warncke D and Brown JR (1998) Potassium and other basic cations. In: Brown JR (ed.) Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn., Columbia, Missouri, p. 31-34.
Watson ME and Brown JR (1998) pH and lime requirement. In: Brown JR (ed.) Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn, Columbia, Missouri, p. 13-16.
Williamson LC, Ribrioux S, Fitter AH and Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126: 875-882.