Phosphorus fertilizer placement and rate affect soybean root growth and nutrient uptake in soil with high fertility

  • Fernando Hansel Kansas State University
  • Dorivar Diaz Kansas State University
  • Alexandre Rosa University of Nebraska
  • Colby Moorberg Kansas State University

Resumo

O manejo do fertilizante fósforo (P) pode alterar o crescimento da raiz e da parte aérea da soja, promovendo desequilíbrios morfológicos na planta. Com o objetivo de avaliar os ajustes morfológicos da soja (Glycine max (L.)) em diferentes colocações e taxas de adubação fosfatada em solo P, foi realizado um estudo em casa de vegetação com dois objetivos principais: 1) avaliar o efeito da adubação fosfatada sobre a raiz e acúmulo de biomassa na parte aérea e as alterações associadas no comprimento das raízes; e, 2) estimar o efeito das alterações do crescimento radicular na absorção de macro e micronutrientes na planta. Os tratamentos com fertilizantes foram: (1) transmissão P na superfície do solo (BR), (2) P5x5 cm (B) aplicada na faixa (B) e (3) banda profunda P a 20 cm de profundidade (DB); usando duas taxas: (1) 60 e (2) 120 kg P2O5 ha-1 em solo com alta fertilidade. Imagens de minirhizotron e medidas de SPAD foram realizadas uma vez por semana até o florescimento. O peso seco da raiz e da parte aérea, bem como a absorção total de macro e micronutrientes foram avaliados no mesmo estágio. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja. O aumento dos níveis de P no solo promovidos pela adubação mostra um efeito negativo no peso seco da raiz na taxa de 60 kg P2O5 ha-1 e muito pouco estímulo à alocação de biomassa nas raízes quando a taxa de P foi aumentada para 120 kg P2O5 ha -1 em tratamentos B e DB. O tratamento de controlo (sem fertilizante) mostrou um comprimento de raiz 108% maior do que o tratamento com B-60. Essas alterações também alteraram a absorção de macro e micronutrientes e afetaram o teor de clorofila nas plantas de soja.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fernando Hansel, Kansas State University
Departamento de Agronomia
Dorivar Diaz, Kansas State University
Departamento de Agronomia
Alexandre Rosa, University of Nebraska
Departamento de Agronomia
Colby Moorberg, Kansas State University
Departamento de Agronomia

Referências

Abel S (2011) Phosphate sensing in root development. Current Opinion Plant Biology 14: 303-309.

Anghinoni I and Barber SA (1980) Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agronomy Journal 72: 685-688.

Barber SA and Silverbush M (1984) Plant root morphology and nutrient uptake. In: Barber SA, Bouldin DR, Kral DM and Hawkins SL (eds.) Roots, Nutrient and Water Influx, and Plant Growth. ASA Specia. American Society of Agronomy, Madison, WI. p. 65-88.

BassiriRad H, Gutschick VP and Lussenhop J (2001) Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO2. Acta Oecologia 126: 305-320.

Bender RR, Haegele JW and Below FE (2015) Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agronomy Journal 107: 563-573.

Borkert CM and Barber SA (1985) Soybean Shoot and Root Growth and Phosphorus Concentration as Affected by Phosphorus Placement. Soil Science Society of America Journal 49: 152-155.

Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytologist 75: 479-490.

Chapman SC and Barreto HJ (1997) Using a Chlorophyll Meter to Estimate Specific Leaf Nitrogen of Tropical Maize during Vegetative Growth. Agronomy Journal 89:557-562.

Eissenstat DM and Yanai RD (1997) The Ecology of Root Lifespan. Advances in Ecological Research 27: 1-60.

Frank K, Beegle D and Denning J (1998) Phosphorus. In: Brown JR (ed.), Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn, Columbia, Missouri. p. 21-30.

Gieseking JE, Snider HJ and Getz CA (1935) Destruction of organic matter in plant material by the use of nitric and perchloric acid. Industrial & Engineering Chemistry Analytical 7: 185-186.

Hansel FD, Amado TJC, Bortolotto RP, Trindade BS and Hansel DSS (2014) Influence of different phosphorus sources on fertilization efficiency. Applied Research & Agrotecnology 7: 103-111.

Hansel FD, Ruiz Diaz DA, Amado TJC and Rosso LHM (2017a). Deep Banding Increases Phosphorus Removal by Soybean Grown under No-Tillage Production Systems. Agronomy Journal 109: 1-8.

Hansel FD, Amado TJC, Ruiz Diaz DA, Rosso LHM, Nicoloso FT and Schorr M (2017b) Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agronomy Journal 109: 1091-1099.

Hendry GAF and Price AH (1993) Stress indicators: chlorophylls and carotenoids. In: Hendry GAF and Grime JP (eds.) Methods in Comparative Plant Ecology. Chapman & Hall, London. p. 148-152.

Hermans C, Hammond JP, White PJ and Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11: 610-617.

Hoskins B (2002) Organic Matter by Loss on Ignition. University of Maine.

Iwasa Y and Roughgarden J (1984) Shoot/root balance of plants: Optimal growth of a system with many vegetative organs. Theoretical Population Biology 25: 78-105.

Lindner RC and Harley CP (1942) A Rapid Method for the Determination of Nitrogen in Plant Tissue. Science 96: 565-566.

López-Bucio J, Cruz-Ramírez A and Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Current Opinion Plant Biology 6: 280-287.

Lynch JP and Brown KM (2001) Topsoil foraging - An architectural adaptation of plants to low phosphorus availability. In Plant and Soil. p. 225-237.

Ma BL, Morrison MJ and Voldeng HD (1994) Leaf Greenness and Photosynthetic Rates in Soybean. Crop Science Society of America 35: 1411-1414.

Marschner H, Kirkby E and Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal Experimental Botany 47: 1255-1263.

Mendiburu F (2010) Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.0-9. Accessed December 18, 2016. http://CRAN.R-project.org/package=agricolae

Muller M and Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiology 134: 409-419.

Nacry P (2005) A Role for Auxin Redistribution in the Responses of the Root System Architecture to Phosphate Starvation in Arabidopsis. Plant Physiology 138: 2061-2074.

Nunes RS, Sousa DMG, Goedert WJ and Vivaldi LJ (2011) Distribuição de fósforo no solo em razão do sistema de cultivo e manejo da adubação fosfatada. Revista Brasileira de Ciencia do Solo 35: 877-888.

Pedersen P (2003) Soybean Growth and Development. Iowa State University Extension Publication. Iowa State University, Ames, IA.

Péret B, Clément M, Nussaume L and Desnos T (2011) Root developmental adaptation to phosphate starvation: Better safe than sorry. Trends in Plant Science 16: 442-450.

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P and Mommer L (2011) Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. Phytologist 193: 30-50.

R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Salisbury FB and Ross CW (1992) Plant physiology. 4th. ed. Belmont, CA. Wadsworth.

Shipley B and Meziane D (2002) The balance-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16: 326-331.

Sun C-H, Yu J-Q and Hu D-G (2017) Nitrate: A Crucial Signal during Lateral Roots Development. Frontiers in Plant Science 8: 485.

Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y and Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant Journal 64: 775-789.

Thornley JHM (1972) A Balanced Quantitative Model for Root: Shoot Ratios in Vegetative Plants. Annals of Botany 36: 431-441.

Warncke D and Brown JR (1998) Potassium and other basic cations. In: Brown JR (ed.) Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn., Columbia, Missouri, p. 31-34.

Watson ME and Brown JR (1998) pH and lime requirement. In: Brown JR (ed.) Recommended chemical soil test procedures for the North Central Region. North Cent. Missouri Agric. Exp. Stn, Columbia, Missouri, p. 13-16.

Williamson LC, Ribrioux S, Fitter AH and Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126: 875-882.

Publicado
2019-07-05
Como Citar
Hansel, F., Diaz, D., Rosa, A., & Moorberg, C. (2019). Phosphorus fertilizer placement and rate affect soybean root growth and nutrient uptake in soil with high fertility. ASB Journal, 5(1), 62. https://doi.org/10.33158/ASB.2019v5i1p62
Seção
Artigos