Multi-information analysis for recommendation of flooded-irrigated rice for adaptability and phenotypic stability

  • Antônio Carlos Siva Júnior Federal University of Viçosa
  • Michele Jorge Silva Federal University of Viçosa https://orcid.org/0000-0001-8648-8825
  • Weverton Gomes Costa Federal University of Viçosa https://orcid.org/0000-0003-0742-5936
  • Ithalo Coelho Sousa Federal University of Viçosa
  • Cosme Damião Cruz Federal University of Viçosa
  • Moysés Nascimento Federal University of Viçosa
  • Plínio César Soares Soares Empresa de Pesquisa Agropecuária de Minas Gerais

Resumo

The GxE interaction is one of the major difficulties of plant breeding programs, both in the selection phase and in the recommendation of cultivars. To assess adaptability and stability, various statistical methods are used. The simultaneous use of some methodologies, using multi-information criteria for cultivar�??s recommendation, can extract information that cannot be observed using each methodology separately. The aim of this work was to perform a large description of the behavior of flooded-irrigated rice genotypes, responding to environmental variations, using methods already established in the literature, but exploring the particularities of each methodology that together establish an information criterion for cultivar recommendation. To this end, 18 rice genotypes belonging to flood-irrigated rice breeding program were evaluated over four agricultural years, 2012/2013 to 2015/2016, totaling 12 environments (3 sites �? 4 years). Multi-information estimates were performed to adaptability and stability analysis. There was no sign for the effect of the genotypes, and there was the significance of the effects of environment and GxE interaction. The aggregation of information and the large description of the behavior of the flooded rice genotypes demonstrated to be an efficient tool for studies of adaptability and stability.

Downloads

Não há dados estatísticos.

Referências

Akter, A., Hasan, M. J., Kulsum, U. M., Lipi, L. F., Begum, H., Rahman, N. M. F., Farhat, T., & Baki, M. D. Z. I. (2019). Stability and adaptability of promising hybrid rice genotypes in different locations of Bangladesh. Advances in Plants & Agriculture Research, 9: 35-39. http://dx.doi.org/10.15406/apar.2019.09.00407.

Annicchiarico, P. (1992). Cultivar adaptation and recommendation from alfafa trials in Northern Italy. Journal of Genetics and Breeding, 46, 269-278.

Barros, H. B., Sediyama, T., Texeira, R. C., Fidelis R. R, Cruz, C. D., & Reis, M. S. (2010). Adaptabilidade e estabilidade de genótipos de soja avaliados no estado do Mato Grosso. Revista Ceres, 57: 359-366. http://dx.doi.org/10.1590/S0034-737X2010000300011.

Barroso, L. M. A., Nascimento, M., Nascimento, A. C. C., Silva, F. F., Cruz, C. D., Bhering, L. L., & Ferreira, R. P. (2015). Metodologia para análise de adaptabilidade e estabilidade por meio de regressão quantílica. Pesquisa Agropecuária Brasileira, 50: 290-297. http://dx.doi.org/10.1590/S0100-204X2015000400004.

Batista, R. O., Hamawaki, R. L., Souza, L. B., Nogueira, A. P. O., & Hamawaki, O. T. (2015). Adaptability and stability of soybean genotypes in off-season cultivation, Genetics and Molecular Research. 14: 9633-9645. http://dx.doi.org/10.4238/2015.

Bujak, H., Nowosad, K., & Warzecha, R. (2014). Evaluation of maize hybrids stability using parametric and non-parametric methods. Maydica, 59, 170-175.

Cargnelutti Filho, A., Perecin, D., Malheiros, E. B., & Guadagnin, J. P. (2007). Comparação de métodos de adaptabilidade e estabilidade relacionados à produtividade de grãos de cultivares de milho. Bragantia, 66: 571-578. http://dx.doi.org/10.1590/S0006-87052007000400006.

Carneiro, A. R. T., Sanglard, D. A., Azevedo, A. M., Souza, T. L. P. O., Pereira, H. S., & Melo, L. C. (2019). Fuzzy logic in automation for interpretation of adaptability and stability in plant breeding studies. Scientia Agricola, 76: 123-129. http://dx.doi.org/10.1590/1678-992x-2017-0207.

Carneiro, V. Q., Prado, A. L., Cruz, C. D., Carneiro, P. C. S., Nascimento, & M., Carneiro, J. E. S. (2018). Fuzzy control systems for decision-making in cultivars recommendation. Acta Scientiarum Agronomy, 40: 1-8. http://dx.doi.org/10.4025/actasciagron.v40i1.39314.

Chaves, L. J. (2001). Interação de genótipos com ambientes. In: Nass, L. L., Valois, A. C. C., Melo, I. S., & Valadares-Inglis, M. C. Recursos Genéticos & Melhoramento de Plantas. Rondonópolis, MT: Fundação de Apoio à Pesquisa Agropecuária de Mato Grosso, p. 673-713.

Couto, M. F., Nascimento, M., Amaral, A. T., Silva, F. F., Viana, A. P., & Vivas, M. (2015). Eberhart and Russel�??s Bayesian Method in the Selection of Popcorn Cultivars. Crop Science, 55: 571-571. http://dx.doi.org/10.2135/cropsci2014.07.0498.

Cruz, C. D. (2016). Genes Software �?? extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38: 547-552. http://dx.doi.org/10.4025/actasciagron.v38i4.32629.

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético �?? Volume 1. Viçosa, MG: Editora UFV.

Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. (2014). Modelos biométricos aplicados ao melhoramento genético �?? Volume 2. (3a ed.). Viçosa, MG: Editora UFV.

Cruz, C. D. Torres, R. A., & Vencovsky, R. (1989). An alternative approach to the stability analysis proposed by Silva e Barreto. Revista Brasileira de Genética, 12: 567-580.

Eberhart, A. S., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6: 36-40. http://dx.doi.org/10.2135/cropsci1966.0011183X000600010011x.

Eeuwijk, F. A. V.; Bustos-Korts, D. V., and Malosetti, M. (2016). What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype ´ Environment Interactions? Crop Science 56: 2119�??2140. http://dx.doi.org/10.2135/cropsci2015.06.0375

Faria, S. V., Luz, L. S., Rodrigues, M. C., Carneiro, J. E. S., Carneiro, P. C. S., & Delima, R. O. (2017). Adaptability and stability in commercial maize hybrids in the southeast of the State of Minas Gerais, Brazil. Revista Ciência Agronômica, 48: 347-357. https://dx.doi.org/10.5935/1806-6690.20170040.

Fikere, M., Bing, D. J., Tadesse, T., & Ayana, A. (2014). Comparison of biometrical methods to describe yield stability in field pea (Pisum sativum L.) under South eastern Ethiopian conditions. Academic Journals, 9: 2574-2583. https://dx.doi.org/10.5897/AJAR09.602.

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14: 742-754. https://doi.org/10.1071/AR9630742.

Freitas Monteiro, F. J., Peluzio, J. M., Afferri, F. S., Carvalho, E. V., Santos, & W. F. (2015). Correlação entre parâmetros de quatro metodologias de adaptabilidade e estabilidade em cultivares de soja em ambientes distintos. Revista de la Facultad de Agronomía, 114: 143-147.

Huehn, M. (1990). Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica, 47: 189-194. https://doi.org/10.1007/BF00024241.

Lin, C. S. & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68,193-198.

Maia, M. C. C., Vello, N. A., Araujo, L. B., Dias, C. T. S., Oliveira, L. C., & Rocha, M. M. (2013). Interação genótipo x ambiente com uso da análise de componentes principais para populações de soja selecionadas para resistência a insetos. Revista Brasileira de Biometria, 31, 13-27.

Nascimento, M., Ferreira, A., Ferrão, R. G., Campana, A. C. M., Bhering, L. L., Cruz, C. D., Ferrão, M. A. G., & Fonseca, A. F. A. (2010). Adaptabilidade e estabilidade via regressão não paramétrica em genótipos de café. Pesquisa Agropecuária Brasileira, 45: 41-48. http://dx.doi.org/10.1590/S0100-204X2010000100006.

Nascimento, M., Ferreira, A., Nascimento, A. C. C., Silva, F. F., Ferreira, R. P., & Cruz, C.D. (2015). Multiple centroid method to evaluate the adaptability of alfalfa genotypes. Revista Ceres, 62: 30-36. http://dx.doi.org/10.1590/0034-737X201562010004.

Nascimento, M., Peternelli, L. A., Cruz, C. D., Nascimento, A. C. C., Ferreira, R. P., Bhering, L. L., & Salgado, C. C. (2013). Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes. Crop Breeding and Applied Biotechnology, 13,152-156.

Nascimento, M., Silva, F. F., Sáfadi, T., Nascimento, A. C. C., Ferreira, R. P., & Cruz, C. D. (2011). Abordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafa. Pesquisa Agropecuária Brasileira, 46: 26-32. http://dx.doi.org/10.1590/S0100-204X2011000100004.

Nunes, H. F., Freire Filho, F. R., Ribeiro, V. Q., Gomes, & R. L. F. (2014). Grain yield adaptability and stability of blackeyed cowpea genotypes under rainfed agriculture in Brazil. Academic Journals, 9: 255-261. http://dx.doi.org/10.5897/AJAR212.2204

Oliveira, R. B. R., Moreira, R. M. P., & Ferreira, J.M. (2013). Adaptability and stability of maize landrace varieties. Semina: Ciências Agrárias, 34: 2555-2564. http://dx.doi.org/10.5433/1679-0359.2013v34n6p2555.

Oliveira, T. R. A., Carvalho, H. W. L., Costa, E. F. N., & Carvalho Filho, J. L. S. (2017). Correlation among adaptability and stability assessment models in maize cultivars. Australian Journal of Crop Science, 11: 516-521. http://dx.doi.org/10.21475/ajcs.17.11.05.p304

Paula, T. O. M., Marinho, C. D., Souza, V., Barbosa, M. H. P., Peternelli, L. A., Kimbeng, C. A., & Zhou, M. M. (2014). Relationships between methods of variety adaptability and stability in sugarcane. Genetics and Molecular Research, 13: 4216-4225. http://dx.doi.org/10.4238/2014.

Plaisted, R. L. & Peterson, L. C. (1959). A technique for evaluating the ability of selections to yield consistently in different locations and seasons. American Potato Journal, 36: 381-385. https://doi.org/10.1007/BF02852735.

Rocha, R. B., Muro-Abad, J. I., Araujo, E. F., & Cruz, C. D. (2005). Avaliação do método centróide para estudo de adaptabilidade ao ambiente de clones de Eucalyptus grandis. Ciência Florestal, 15: 255-266. https://doi.org/10.5902/198050981863.

Roostaei, M., Mohammadi, R., & Amri, A. (2014). Rank correlation among different statistical models in ranking of winter wheat genotypes. The Crop Journal, 2: 154-163. https://doi.org/10.1016/j.cj.2014.02.002.

Santos, I. G., Carneiro, V. Q., Silva Junior, A. C., Cruz, C. D. & Soares, P. C. (2019). Self-organizing maps in the study of genetic diversity among irrigated rice genotypes. Acta Scientiarum Agronomy, 41. https://doi.org/10.4025/actasciagron.v41i1.39803.

Silva Júnior, A. C., Carneiro, V. Q., Santos, I. G., Costa, W. G., Silva, G. N., Cruz, C. D. & Soares, P. C. (2020 a). Methods of adaptability and stability applied to the improvement of flooded rice. Genetics and Molecular Research, 19(3). http://dx.doi.org/10.4238/gmr18434.

Silva Júnior, A. C., Jorge, M., Cruz, C. D., Nascimento, M., Azevedo, C. F., & Soares, P. C. (2020 b). Patterns recognition methods to study the genotype similarity in flood-irrigated rice. Bragantia, 79: 1-8. https://doi.org/10.1590/1678-4499.20200232.

Silva, G. N., Silva Junior, A. C., Sant�??Anna, I. C. Cruz, C. D., Nascimento, M., & Soares, P. C. (2019). Projeção de distâncias como método auxiliar na classificação de arroz irrigado quanto a adaptabilidade e estabilidade. Revista Brasileira de Biometria, 37: 229-243. https://doi.org/10.28951/rbb.v37i2.383.

Soares, P. C., Melo, P. G. S. Melo, L. C., & Soares, A. A. (2005). Genetic gain in an improvement program of irrigated rice in Minas Gerais. Crop Breeding and Applied Biotechnology, 5: 142-148. http://dx.doi.org/10.12702/1984-7033.v05n02a03

Streck, E. A., Aguiar, G. A., Magalhães Júnior, A. M., Facchinello, H. K., & Oliveira, A. C. (2017). Variabilidade fenotípica de genótipos de arroz irrigado via análise multivariada. Revista Ciência Agronômica, 48: 101-109. http://dx.doi.org/10.5935/1806-6690.20170011.

Tai, G. C. C. (1971). Genotype stability analysis and its application to potato regional trials. Crop Science, 11: 184-190. https://doi.org/10.2135/cropsci1971.0011183X001100020006x.

Teodoro, P. E., Barroso, L. M. A., Nascimento, M., Torres, F. E., Sagrilo, E., Santos, A. E., & Ribeiro, L.P. (2015). Redes neurais artificiais para identificar genótipos de feijão caupi semiprostrado com alta adaptabilidade e estabilidade fenotípicas. Pesquisa Agropecuária Brasileira, 50: 1054-1060. http://dx.doi.org/10.1590/S0100-204X2015001100008.

Verma, M. M., Chahal, G. S., & Murty, B. R. (1978). Limitations of conventional regression analysis: a proposed modification. Theoretical and Applied Genetics, 53: 89-91. https://doi.org/10.1007/BF00817837.

Woyann, L. G., Milioli, A. S., Bozi, A. H., Dalló Samuel, C., Matei, G., Storck, L., & Benin, G. (2018). Repeatability of associations between analytical methods of adaptability, stability, and productivity in soybean. Pesquisa Agropecuária Brasileira, 53: 63-73. http://dx.doi.org/10.1590/s0100-204x2018000100007.

Wricke, G. (1965). Zur Berechnung der �?kovalenz bei Sommerweizen und Hafer. Pflanzenzuchtung, 52: 127-138.

Yates, F., & Cochran, W. G. (1938). The analysis of group of experiments. Journal of Agricultural Science, 28: 556-580. https://doi.org/10.1017/S0021859600050978.

Publicado
2021-11-17
Como Citar
Júnior, A. C. S., Silva, M. J., Costa, W. G., Sousa, I. C., Cruz, C. D., Nascimento, M., & Soares, P. C. S. (2021). Multi-information analysis for recommendation of flooded-irrigated rice for adaptability and phenotypic stability . ASB Journal, 8, 1-15. https://doi.org/10.33158/ASB.r145.v8.2022
Seção
Artigos

##plugins.generic.recommendByAuthor.heading##