Maize breeding for abiotic stress tolerance: An alternative to face climate changes
Resumo
Maize breeding faces several challenges when the matter is abiotic stresses. For many years, the focus was to develop genotypes adapted to optimal environmental conditions, however, the need to ensure yields under unsuitable and unstable conditions of a climate-changing world is undeniable. Therefore, this review is addressed to the main abiotic stresses that jeopardize maize production worldwide, presenting an overview regarding losses and impacts imposed by them, stating what has been achieved through conventional and molecular plant breeding techniques, and the future prospects on this subject. The conventional breeding added to molecular techniques bring great expectations for developing abiotic stresses tolerant maize genotypes. Universities and research companies worldwide have contributed to expand and spread basic and essential knowledge, however, the entrance of large multinational companies might revolutionize the field. Genetic modified hybrids and projects of continental coverage will introduce many innovations and alternatives to ensure food security for the increasingly growing world population.
Downloads
Referências
Ahmed, F., Rafii, M. Y., Ismail, M. R., Juraimi, A. S., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013, 1�??10. https://doi.org/10.1155/2013/963525
Akram, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J., & Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42(1), 141�??154. https://doi.org/10.5897/ajar11.1475
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.). In Drought Stress in Maize (Zea mays L.) (pp. 5�??17). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-25442-5_2
Aslam, M., Zamir, I., Afzal, I., Yaseen, M., Mubeen, M., & Shoaib, A. (2013). Drought tolerance in maize through Potassium: Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercet�?ri Agronomice �?n Moldova, XLVI(2154), 16.
Aylor, D. E. (2004). Survival of maize (Zea mays) pollen exposed in the atmosphere. Agricultural and Forest Meteorology, 123(3�??4), 125�??133. https://doi.org/10.1016/j.agrformet.2003.12.007
Bailey-Serres, J., Lee, S. C., & Brinton, E. (2012). Waterproofing crops: Effective flooding survival strategies. Plant Physiology, 160(4), 1698�??1709. https://doi.org/10.1104/pp.112.208173
Bänziger, M., & Araus, J. L. (2007). No Title. In S. Jenks, M. A., Hasegawa, P. M., & Mohan (Ed.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops (pp. 587�??501). Dordretch, The Netherlands: Springer. https://doi.org/10.1007/978-1-4020-5578-2
Bänziger, M., Betrán, F. J., & Lafitte, H. R. (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Science, 37(4), 1103�??1109. https://doi.org/10.2135/cropsci1997.0011183X003700040012x
Bänziger, Marianne, & Cooper, M. (2001). Breeding for low input conditions and consequences for participatory plant breeding: Examples from tropical maize and wheat. Euphytica, 122(3), 503�??519. https://doi.org/10.1023/A:1017510928038
Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5(0), 1�??10. https://doi.org/10.12688/F1000RESEARCH.7678.1
Basu, U., Basu, A., & Taylor, G. J. (1994). Differential exudation of polypeptides by roots of aluminum-resistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminum stress. Plant Physiology, 106(1), 151�??158. https://doi.org/10.1104/pp.106.1.151
Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R., �?� Prasanna, B. M. (2012). Maize production in a changing climate. impacts, adaptation, and mitigation strategies. Advances in Agronomy (Vol. 114). https://doi.org/10.1016/B978-0-12-394275-3.00006-7
Cairns, Jill E., Crossa, J., Zaidi, P. H., Grudloyma, P., Sanchez, C., Luis Araus, J., �?� Atlin, G. N. (2013). Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 53(4), 1335�??1346. https://doi.org/10.2135/cropsci2012.09.0545
Casaretto, J. A., El-kereamy, A., Zeng, B., Stiegelmeyer, S. M., Chen, X., Bi, Y. M., & Rothstein, S. J. (2016). Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics, 17(1), 1�??15. https://doi.org/10.1186/s12864-016-2659-5
Cheikh, N., & Jones, R. J. (1994). Disruption of maize kernel growth and development by heat stress. Role of cytokinin/abscisic acid balance. Plant Physiology, 106(1), 45�??51. https://doi.org/10.1104/pp.106.1.45
Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5), 354�??364. https://doi.org/10.2489/jswc.67.5.354
Coelho, C. J., Molin, D., Wood-Joris, H. A., Caires, E. F., Gardingo, J. R., & Matiello, R. R. (2015). Selection of maize hybrids for tolerance to aluminum in minimal solution. Genetics and Molecular Research, 14(1), 134�??144. https://doi.org/10.4238/2015.January.15.16
Connolly, E. L., & Guerinot, M. L. (2002). Iron stress in plants. Genome Biology, 3(8), 1�??4. https://doi.org/10.1186/gb-2002-3-8-reviews1024
Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS ONE, 11(5), 1�??15. https://doi.org/10.1371/journal.pone.0156362
Di, H., Tian, Y., Zu, H., Meng, X., Zeng, X., & Wang, Z. (2015). Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica, 206(3), 775�??783. https://doi.org/10.1007/s10681-015-1515-z
Doncheva, S., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., & Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65(2�??3), 189�??197. https://doi.org/10.1016/j.envexpbot.2008.11.006
Drew, M. C. (1997). Oxygen deficiency and root metabolism: Injury and Acclimation under Hypoxia and Anoxia. Annual Review of Plant Biology, 48, 223�??250. https://doi.org/10.1146/annurev.arplant.48.1.223
Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94(2), 665�??670. https://doi.org/10.1104/pp.94.2.665
Eagles, H. A. (1979). Cold tolerancr and its relevance to maize breeding in new zealand. 97 Proceedings Agronomy Society of New Zealand 9;, 9, 97�??100. Retrieved from https://ci.nii.ac.jp/naid/120006591046/
FAO - Food and Agriculture Organization of the United Nations (2005). Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome, Italy. Heat stress tolerant maize for south asia (HTMA) final evaluation report april �?? september 2016. Available at: http://pdf.usaid.gov/pdf_docs/PA00MFH4.pdf, accessed in November 19th, 2017.
FAO - Food and Agriculture Organization of the United Nations (20130. How to Feed the World in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress : effects , mechanisms and management To cite this version : Review article. Agronomy for Sustainable Developmen, 29(1), 185�??212.
Ferreira, J. L., Coelho, C. H. M., Magalhães, P. C., Gama, E. E. G., & Borém, A. (2007). Genetic variability and morphological modifications in flooding tolerance in maize, variety BRS-4154. Crop Breeding and Applied Biotechnology, 7(3), 314�??320. https://doi.org/10.12702/1984-7033.v07n03a11
Gharoobi, B., Ghorbani, M., & Nezhad, M. G. (2012). Effects of different levels of osmotic potential on germination percentage and germination rate of barley, corn and canola. Iranian Journal of Plant Physiology, 2(2), 413�??417.
Gilliham, M., Chapman, S., Martin, L., Jose, S., & Bastow, R. (2017). The case for evidence-based policy to support stress-resilient cropping systems. Food and Energy Security, 6(1), 5�??11. https://doi.org/10.1002/fes3.104
Gómez, L. D., Vanacker, H., Buchner, P., Noctor, G., & Foyer, C. H. (2004). Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiology, 134(4), 1662�??1671. https://doi.org/10.1104/pp.103.033027
Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2017). QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy, 7(1), 1�??21. https://doi.org/10.3390/agronomy7010005
Habier, D., Fernando, R. L., Kizilkaya, K., & Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 1�??12. https://doi.org/10.1186/1471-2105-12-186
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., �?� Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103(2), 351�??370. https://doi.org/10.2134/agronj2010.0303
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4�??10. https://doi.org/10.1016/j.wace.2015.08.001
Hoque, M. M., Jun, Z., & Guoying, W. (2015). Evaluation of salinity tolerance in maize (Zea mays L.) genotypes at seedling stage. Journal of BioScience and Biotechnology, 4(1), 39�??49. Retrieved from https://editorial.uni-plovdiv.bg/index.php/JBB/issue/view/11
Huo, Y., Wang, M., Wei, Y., & Xia, Z. (2016). Overexpression of the Maize psbA Gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense Gene expression in tobacco. Frontiers in Plant Science, 6(JAN2016), 1�??10. https://doi.org/10.3389/fpls.2015.01223
Jewell, M. C., Campbell, B. C., & Godwin, I. D. (2010). Transgenic plants for abiotic stress resistance. In T. C. Kole, C., Michler, C. H., Abbott, A. G., & Hall (Ed.), Transgenic Crop Plants (pp. 67�??132). Berlin, Heidelberg: Springer. https://doi.org/DOI https://doi.org/10.1007/978-3-642-04812-8_2
Jones, R. J., Roessler, J., & Ouattar, S. (1985). Thermal Environment During Endosperm Cell Division in Maize: Effects on Number of Endosperm Cells and Starch Granules 1 . Crop Science, 25(5), 830�??834. https://doi.org/10.2135/cropsci1985.0011183x002500050025x
Kato-Noguchi, H., & Morokuma, M. (2007). Ethanolic fermentation and anoxia tolerance in four rice cultivars. Journal of Plant Physiology, 164(2), 168�??173. https://doi.org/10.1016/j.jplph.2005.09.017
Khodarahmpour, Z., Choukan, R., Bihamta, M. R., & Majidi-Hervan, E. (2011). Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 13(1), 111�??121.
Krause, G. H., Grafflage, S., Rumich-Bayer, S., & Somersalo, S. (1988). Effects of freezing on plant mesophyll cells. Symp Soc Exp Biol, 42, 311�??327. Retrieved from https://pubmed.ncbi.nlm.nih.gov/3077862/
Leipner, J., Fracheboud, Y., & Stamp, P. (1999). Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environmental and Experimental Botany, 42(2), 129�??139. https://doi.org/10.1016/S0098-8472(99)00026-X
Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1). https://doi.org/10.1088/1748-9326/2/1/014002
Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6(6), 273�??278. https://doi.org/10.1016/S1360-1385(01)01961-6
Magorokosho C., Vivek, B., MacRobert, J., & Tarekegne, A. (2010). Characterization of maize germplasm grown in eastern and southern Africa: Results of the 2009 regional trials coordinated by CIMMYT. Harare, Zimbabwe: CIMMYT. Retrieved from https://repository.cimmyt.org/bitstream/handle/10883/3780/96060.pdf?sequence=1&isAllowed=y
Mano, Y., & Omori, F. (2013). Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Annals of Botany, 112(6), 1125�??1139. https://doi.org/10.1093/aob/mct160
Mano, Y., & Omori, F. (2015). Flooding tolerance in maize (Zea mays subsp. mays) F1 hybrids containing a QTL introgressed from teosinte (Zea nicaraguensis). Euphytica, 205(1), 255�??267. https://doi.org/10.1007/s10681-015-1449-5
Mano, Y., Muraki, M., & Takamizo, T. (2006). Identification of QTL controlling flooding tolerance in reducing soil conditions in maize (Zea mays L.) seedlings. Plant Production Science, 9(2), 176�??181. https://doi.org/10.1626/pps.9.176
Mano, Y., & Omori, F. (2007). Breeding for flooding tolerant maize using �??teosinte�?� as a germplasm resource. Plant Root, 1, 17�??21. https://doi.org/10.3117/plantroot.1.17
Mano, Y., Omori, F., Tamaki, H., Mitsuhashi, S., & Takahashi, W. (2016). DNA marker-assisted selection approach for developing flooding-tolerant maize. Japan Agricultural Research Quarterly, 50(3), 175�??182. https://doi.org/10.6090/jarq.50.175
Maricle, B. R., & Lee, R. W. (2002). Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquatic Botany, 74(2), 109�??120. https://doi.org/10.1016/S0304-3770(02)00051-7
Maron, L. G., Guimarães, C. T., Kirst, M., Albert, P. S., Birchler, J. A., Bradbury, P. J., �?� Kochian, L. V. (2013). Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5241�??5246. https://doi.org/10.1073/pnas.1220766110
Maron, L. G., Piñeros, M. A., Guimarães, C. T., Magalhaes, J. V., Pleiman, J. K., Mao, C., �?� Kochian, L. V. (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant Journal, 61(5), 728�??740. https://doi.org/10.1111/j.1365-313X.2009.04103.x
Meehl, G. A., Stocker, T. F., Collins, W. D., Gaye, A. J., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, J. G., Weaver, A. J., Zhao, Z. Meehl, G. A., Stocker, T. F., Collins, W. D., Gaye, A. J., Gregory, J. M., Z. (2007). Global Climate Projections. In T. F. Meehl, G. A., & Stocker (Ed.), Climate Change (pp. 748�??845). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Mindari, W., Maroeto, & Syekhfani, (2011). Corn Tolerance on Irrigation Water Salinity. Jurnal TANAH TROPIKA (Journal of Tropical Soils), 16(3), 211�??218. https://doi.org/10.5400/jts.2011.16.3.211
Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025�??1043. https://doi.org/10.1093/jxb/erj100
Murillo-Amador, B., López-Aguilar, R., Kaya, C., Larrinaga-Mayoral, J., & Flores-Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188(4), 235�??247. https://doi.org/10.1046/j.1439-037X.2002.00563.x
Naidu, S. L., Moose, S. P., Al-shoaibi, A. K., Raines, C. A., & Long, S. P. (2003). Cold Tolerance of C4 photosynthesis in Miscanthus �? giganteus: Adaptation in Amounts and Sequence of C4 Photosynthetic Enzymes. Plant Physiology, 132(July), 1688�??1697. https://doi.org/10.1104/pp.103.021790.photosynthetic
Nejad, T. S., Bakhshande, A., Nasab, S. B., & Payande, K. (2010). Effect of drought stress on corn root growth. Report and Opinion, 2(2), 47�??53.
Netondo, G. W., Onyango, J. C., & Beck, E. (2004). of Sorghum under Salt Stress. Crop Science, 44, 806�??811.
Nguyen, H. T., Leipner, J., Stamp, P., & Guerra-Peraza, O. (2009). Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 47(2), 116�??122. https://doi.org/10.1016/j.plaphy.2008.10.010
Parent, C., Crèvecoeur, M., Capelli, N., & Dat, J. F. (2011). Contrasting growth and adaptive responses of two oak species to flooding stress: Role of non-symbiotic haemoglobin. Plant, Cell and Environment, 34(7), 1113�??1126. https://doi.org/10.1111/j.1365-3040.2011.02309.x
Quintero, J. M., Fournier, J. M. & Benlloch, M. (2007). Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. Journal of Plant Physiology, 164(1), 60�??67. https://doi.org/10.1016/j.jplph.2005.10.010
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017�??1023. https://doi.org/10.1093/jxb/erj108
Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613�??620. https://doi.org/10.1071/FP09249
Revilla, P., Rodríguez, V. M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C., �?� Malvar, R. A. (2014). Cold tolerance in two large maize inbred panels adapted to European climates. Crop Science, 54(5), 1981�??1991. https://doi.org/10.2135/cropsci2013.11.0733
Revilla, P., Rodríguez, V. M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C., �?� Malvar, R. A. (2016). Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biology, 16(1), 1�??10. https://doi.org/10.1186/s12870-016-0816-2
Richard, C., Munyinda, K., Kinkese, T., & Osiru, D. S. (2015). Genotypic variation in seedling tolerance to aluminum toxicity in historical maize inbred lines of Zambia. Agronomy, 5(2), 200�??219. https://doi.org/10.3390/agronomy5020200
Rosegrant, M. W., Msangi, S., Ringler, C., Sulser, T. B., Zhu, T., & Cline, S. A. (2008). Model for policy analysis of agricultural commodities and trade (IMPACT): Model description. IFPRI. Retrieved from https://www.ifpri.org/
Roy, A. K., Sharma, A., Talukder, G., & Talukder, K. (1988). Some Aspects of Aluminum Toxicity in Plants. Botanical Review, 54(2), 145�??178. Retrieved from https://www.jstor.org/stable/4354111?seq=1
Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115�??124. https://doi.org/10.1016/j.copbio.2013.12.004
Sánchez, P. A., & Salinas, J. G. (1981). Low-input technology for managing Oxisols and Ultisols in tropical America. Advances in Agronomy, 34, 279�??406. https://doi.org/https://doi.org/10.1016/S0065-2113(08)60889-5
Schlenker, W., & Roberts, M. J. (2009). Do nonlinear temperature effects indicate severe damages to US crop yields under climate change? Proceedings of the National Academy of Sciences of the United States of America, 106(43), 15594�??15598. https://doi.org/10.1073/pnas.0910618106
Setter, T. L., & Flannigan, B. A. (2001). Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany, 52(360), 1401�??1408. https://doi.org/10.1093/jexbot/52.360.1401
Shani, U., & Ben-Gal, A. (2005). Long-term response of grapevines to salinity: Osmotic effects and ion toxicity. American Journal of Enology and Viticulture, 56(2), 148�??154.
Shikha, M., Kanika, A., Rao, A. R., Mallikarjuna, M. G., Gupta, H. S., & Nepolean, T. (2017). Genomic selection for drought tolerance using genome-wide SNPs in Maize. Frontiers in Plant Science, 8(April), 1�??12. https://doi.org/10.3389/fpls.2017.00550
Souza, T. C., Magalhães, P. C., Castro, E. M., Carneiro, N. P., Padilha, F. A., & Gomes-Júnior, C. C. (2014). ABA application to maize hybrids contrasting for drought tolerance: Changes in water parameters and in antioxidant enzyme activity. Plant Growth Regulation, 73(3), 205�??217. https://doi.org/10.1007/s10725-013-9881-9
Strigens, A., Freitag, N. M., Gilbert, X., Grieder, C., Riedelsheimer, C., Schrag, T. A., �?� Melchinger, A. E. (2013). Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant, Cell and Environment, 36(10), 1871�??1887. https://doi.org/10.1111/pce.12096
Taiz, L., & Zeiger, E. (2012). Fisiologia Vegetal (4th ed.). Porto Alegre, RS: ArtMed.
Tsonev, S., Todorovska, E., Avramova, V., Kolev, S., Abu-Mhadi, N., & Christov, N. K. (2009). Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnology and Biotechnological Equipment, 23(4), 1410�??1413. https://doi.org/10.2478/V10133-009-0004-8
Truitt, G. (2013). Monsanto�??s Drought Tolerance Trait In Genuity® Droughtgard® Hybrids Receives Final Major Import Approval From China. Indiana Agriculture News. Retrieved from https://hoosieragtoday.com/monsantos-drought-tolerance-trait-in-genuity-droughtgard-hybrids-receives-final-major-import-approval-from-china/
Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. In M. E. Date, R. A., Grundon, N. J., Rayment, G. E., & Probert (Ed.), Plant-Soil Interactions at Low pH: Principles and Management (pp. 5�??19). Switzerland AG: Springer Nature. https://doi.org/https://doi.org/10.1007/978-94-011-0221-6_1
Ulukan, H. (2011). Plant Genetic Resources and Breeding: Current Scenario and Future Prospects. International Journal of Agriculture and Biology, 13(3), 447�??454.
USDA - United state Department of Agriculture. (2010). USDA Agricultural Projections to 2019. Retrieved from https://www.ers.usda.gov/publications/pub-details/?pubid=37808
Velásquez, J. C. P., Souza-Jr., C. L., Narro, L. A., Pandey, S., & León, C. (2008). Genetic effects for maize traits in acid and non-acid soils. Genetics and Molecular Biology, 31(1), 89�??97.
Wei, A. Y., He, C. M., Li, B., Li, N., & Zhang, J. R. (2011). The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnology Journal, 9(2), 216�??229. https://doi.org/10.1111/j.1467-7652.2010.00548.x
Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33(4), 510�??525. https://doi.org/10.1111/j.1365-3040.2009.02052.x
Witcombe, J. R., Hollington, P. A., Howarth, C. J., Reader, S., & Steele, K. A. (2008). Breeding for abiotic stresses for sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 703�??716. https://doi.org/10.1098/rstb.2007.2179
Wossen, T., Abdoulaye, T., Alene, A., Feleke, S., Menkir, A., & Manyong, V. (2017). Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties. Journal of Environmental Management, 203, 106�??113. https://doi.org/10.1016/j.jenvman.2017.06.058
Zaidi, P. H., Rafique, S., Rai, P. K., Singh, N. N., & Srinivasan, G. (2004). Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crops Research, 90(2�??3), 189�??202. https://doi.org/10.1016/j.fcr.2004.03.002
Zaidi, P. H., Rashid, Z., Vinayan, M. T., Almeida, G. D., Phagna, R. K., & Babu, R. (2015). QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS ONE, 10(4), 1�??14. https://doi.org/10.1371/journal.pone.0124350
Ziyomo, C., & Bernardo, R. (2013). Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Science, 53(4), 1269�??1275. https://doi.org/10.2135/cropsci2012.11.0651
Copyright (c) 2021 ASB Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.