Water deficit in the soybean breeding

  • João Roberto Pimentel Universidade Federal de Pelotas
  • Ivan Ricardo Carvalho Universidade Regional do Noroeste do Estado do Rio Grande do Sul https://orcid.org/0000-0001-7947-4900
  • Cristian Troyjack Universidade Federal de Pelotas
  • Gilberto Troyjack Junior Universidade Federal de Pelotas
  • Vinicius Jardel Szareski Universidade Federal de Pelotas
  • Giordano Gelain Conte Universidade Federal de Pelotas
  • Murilo Vieira Loro Universidade Regional do Noroeste do Estado do Rio Grande do Sul
  • Deivid Araújo Magano Universidade Regional do Noroeste do Estado do Rio Grande do Sul
  • Danieli Jacoboski Hutra Universidade Regional do Noroeste do Estado do Rio Grande do Sul

Resumo

The climate unpredictability causes long periods of drought, becoming the main risk factor in soybeans production fields and consequent losses to farmers in Brazil and worldwide. As sessile organisms, plants are constantly challenged by a wide range of environmental stresses, including drought. Growth constraints and stress due to these environmental changes result in reduced yield and significant harvesting losses. The response to abiotic stresses is a very complex phenomenon, since several stages of plant development can be affected by a particular stress and often several stresses affect the plant simultaneously. In order to mitigate the damages caused by the climate, new soybean cultivars adapted to the drought and the diversified climate are necessary, as well as technological advances in the production of soybeans that must advance with the increase of cultivated area. Therefore, the mechanisms underlying tolerance and adaptation to stress have been the focus of intensive research. In this sense, the objective of this review is to provide an overview of the evolution of genetic improvement regarding the search for more drought-tolerant cultivars, as well as to verify which strategies are used in the genetic improvement of soybean in the search of these genotypes.

CROSSMARK_Color_horizontal.svg

Downloads

Não há dados estatísticos.

Referências

Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., �?� Yano, M. (2016). Global agricultural intensification during climate change: A role for genomics. Plant Biotechnology Journal, 14(4), 1095�??1098. https://doi.org/10.1111/pbi.12467

Akhtar, I., & Nazir, N. (2013). Effect of waterlogging and drought stress in plants. International Journal of Water Resources and Environmental Sciences, 2(2), 34�??40. https://doi.org/10.5829/idosi.ijwres.2013.2.2.11125

Alberto, C. M., Streck, N. A., Heldwein, A. B., Buriol, G. A., & Medeiros, S. L. P. (2006). Água no solo e rendimento do trigo, soja e milho associados ao El Niño Oscilação Sul. Pesquisa Agropecuária Brasileira, 41(7), 1067�??1075. https://doi.org/10.1590/s0100-204x2006000700001

Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373�??399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419�??426. https://doi.org/10.1016/j.tplants.2007.08.003

Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163�??190. https://doi.org/10.1007/s11099-013-0021-6

Assad, E. D., Marin, F. R., Evangelista, S. R., Pilau, F. G., Farias, J. R. B., Pinto, H. S., & Zullo Júnior, J. (2007). Sistema de previsão da safra de soja para o Brasil. Pesquisa Agropecuária Brasileira, 42(5), 615�??625. https://doi.org/10.1590/s0100-204x2007000500002

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of experimental botany, 63(10), 3523-3543. https://doi.org/10.1093/jxb/ers100

Bassett, C. L. (2013). Water use and drought response in cultivated and wild apples. In C. Vahdati, K., & Leslie (Ed.), Abiotic Stress-Plant Responses and Applications in Agriculture (pp. 249�??275). London, UK.

Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5(0), 1�??10. https://doi.org/10.12688/F1000RESEARCH.7678.1

Battisti, R., Sentelhas, P. C., Boote, K. J., Gil, G. M., Farias, J. R. B., & Basso, C. J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1�??14. https://doi.org/10.1016/j.eja.2016.11.004

Bernardo, R. (2002). Breeding for Quantitative Traits in Plants. Woodbury, MN, USA: Stemma Press.

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159�??1168. https://doi.org/10.1071/AR05069

Bubans, V. E., Carvalho, I. R., Ceolin, C., Moura, N. B., Lautenchleger, F., Conceição, G. M., �?� Da, G. (2021). Relative maturity group and its relationships with the non preferential sowing season in soybean. Agronomy Science and Biotechnology, 7, 1�??14. https://doi.org/10.33158/ASB.r121.v7.2021

Câmara, G. M. S. (2009). Soja & Cia. In G. M. S. Câmara (Ed.), Fisiologia da produção de soja (pp. 150�??177). Piracicaba, SP: Edusp.

Carvalho, I., Peter, M., Demari, G. H., Hutra, D. J., Conte, G. G., Zimmermann, C. S., �?� Sangiovo, J. P. (2021). Biometric approach applied to soybean genotypes cultivated in Rio Grande do Sul, Brazil. Agronomy Science and Biotechnology, 7, 1�??11. https://doi.org/10.33158/asb.r118.v7.2021

CEPED - Centro Universitário de Estudos e Pesquisas sobre Desastres. (2013). Atlas Brasileiro de Desastres Naturais: 1991 a 2012. Florianópolis, SC: CEPED, UFSC.

Chavarria, G., Durigon, M. R., Klei, V. A., & Kleber, H. (2015). Restriçâo fotossintética de plantas de soja sob variaçâo de disponibilidade hidrica. Ciencia Rural, 45(8), 1387�??1393. https://doi.org/10.1590/0103-8478cr20140705

Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551�??560. https://doi.org/10.1093/aob/mcn125

CISoja - Centro de Inteligência da Soja. (2018). No Title. Retrieved from http://www.cisoja.com.br/

CONAB �?? Companhia Nacional de Abastecimento. (2018). Acompanhamento da safra brasileira de grãos, v. 5 �?? Safra 2017/2018 �?? N. 8 �?? oitavo levantamento, maio 2018. Brasília, DF: CONAB.

Costa, R. C. L., Lobato, A. K. S., Oliveira-Neto, C. F., Maia, P. S. P., Alves, G. A. R., & Laughinghouse, H. D. (2008). Biochemical and physiological responses in two Vigna uguiculata (L.) Walp. cultivars under water stress. Journal of Agronomy. https://doi.org/10.3923/ja.2008.98.101

Cvikrová, M., Gemperlová, L., Martincová, O., & Vanková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7�??15. https://doi.org/10.1016/j.plaphy.2013.08.005

Dahal, K., Martyn, G. D., & Vanlerberghe, G. C. (2015). Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. New Phytologist, 208(2), 382�??395. https://doi.org/10.1111/nph.13479

Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate - Stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4(MAY), 1�??16. https://doi.org/10.3389/fpls.2013.00138

Devi, M. K. A., & Giridhar, P. (2015). Variations in Physiological Response, Lipid Peroxidation, Antioxidant Enzyme Activities, Proline and Isoflavones Content in Soybean Varieties Subjected to Drought Stress. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85(1), 35�??44. https://doi.org/10.1007/s40011-013-0244-0

Dinakar, C., Djilianov, D., & Bartels, D. (2012). Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense. Plant Science, 182(1), 29�??41. https://doi.org/10.1016/j.plantsci.2011.01.018

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2010). Tecnologias de produção de soja região central do Brasil 2011. Londrina, PR: Embrapa Soja.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2011). Tecnologias de produção de soja: região central do Brasil. Londrina, PR: Embrapa Soja.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2013). Tecnologia de produção de soja: região central do Brasil - Sistema de Produção, 16. Brasília, DF: Embrapa.

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673�??689. https://doi.org/10.1007/s00018-014-1767-0

FAO - Food and Agriculture Organization of the United Nations. (2017). Database-agricultural production (FAO). Retrieved from http://www.fao.org/faostat/en/#home

Farias, J. R. B., Nepomuceno, A. L., & Neumaier, N. (2007). Ecofisiologia da soja - Circular Técnica, 9. Londrina, PR: Embrapa Soja.

Farias, J. R. B., Neumaier, N., & Nepomuceno, A. L. (2009). Soja. In: Monteiro, J. E. B. A. Agrometeorologia dos Cultivos: O fator meteorológico na produção agrícola (pp. 263-277). Brasília, DF: INMET.

Filippou, P., Bouchagier, P., Skotti, E., & Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1�??10. https://doi.org/10.1016/j.envexpbot.2013.09.010

Fioreze, S. L., Pivetta, L. G., Fano, A., Machado, F. R., & Guimarães, V. F. (2011). Comportamento de genótipos de soja submetidos a déficit hídrico intenso em casa de vegetação. Revista Ceres, 58(3), 342�??349. https://doi.org/10.1590/s0034-737x2011000300015

Firmano, R. S., Kuwahara, F. A., & Souza, G. M. (2009). Relação entre adubação fosfatada e deficiência hídrica em soja. Ciência Rural, 39(7), 1967�??1973. https://doi.org/10.1590/s0103-84782009000700003

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6(NOVEMBER), 1�??14. https://doi.org/10.3389/fpls.2015.00978

Fitter, A. H., & Hay, R. K. M. (1987). Environmental Physiology of Plants. New York, USA: Academic Press.

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269�??279. https://doi.org/10.1055/s-2004-820867

Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., �?� Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2(8), 1�??10. https://doi.org/10.1038/NPLANTS.2016.112

Fritsche-Neto, R., & Borém, A. (2011). Melhoramento de plantas para condições de estresses abióticos. Visconde do Rio Branco, MG: Suprema.

Gago, G. M., Almoguera, C., Jordano, J., Gonzalez, D. H., & Chan, R. L. (2002). Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant, Cell and Environment, 25(5), 633�??640. https://doi.org/10.1046/j.1365-3040.2002.00853.x

Giberti, S., Funck, D., & Forlani, G. (2014). �?1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: Stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytologist, 202(3), 911�??919. https://doi.org/10.1111/nph.12701

Harb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 154(3), 1254�??1271. https://doi.org/10.1104/pp.110.161752

Hirakuri, M. H. (2014). O agronegócio da soja nos contextos mundial e brasileiro. Londrina, PR: Embrapa Soja.

Hirakuri, M. H. (2016). Impactos econômicos de estresses na produção de soja da safra 2015/16 - Circular

Técnica, 125. Londrina, PR: Embrapa Soja. Retrieved from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1056325/impactos-economicos-de-estresses-na-producao-de-soja-da-safra-201516

Hiromoto, D. M., & Vello, N. A. (1986). The genetic base of Brazilian soybean (Glycine max (L.) Merrill) cutivars. Revista Brasileira de Genética, 11(2), 295�??306.

Hossain, M. M., Liu, X., Qi, X., Lam, H. M., & Zhang, J. (2014). Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. Crop Journal, 2(6), 366�??380. https://doi.org/10.1016/j.cj.2014.08.001

Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715�??741. https://doi.org/10.1146/annurev-arplant-050213-040000

IBGE - Instituto Brasileiro de Geografia e Estatística. (2009). Censusof Agriculture 2006. Grandes Regiões e Unidades da Federação. Brasília, DF: IBGE.

Iizumi, T., & Ramankutty, N. (2015). How do weather and climate influence cropping area and intensity? Global Food Security, 4, 46�??50. https://doi.org/10.1016/j.gfs.2014.11.003

Jákli, B., Tavakol, E., Tränkner, M., Senbayram, M., & Dittert, K. (2017). Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. Journal of Plant Physiology, 209, 20�??30. https://doi.org/10.1016/j.jplph.2016.11.010

Kaur, G., & Asthir, B. (2014). Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum, 20(10), 1�??11.

Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155�??162. https://doi.org/10.1016/j.plantsci.2015.02.012

Krishnan, P., Singh, R., Verma, A. P. S., Joshi, D. K., & Singh, S. (2014). Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochemical and Biophysical Research Communications, 444(4), 485�??490. https://doi.org/10.1016/j.bbrc.2014.01.091

Lata, C., & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62(14), 4731�??4748. https://doi.org/10.1093/jxb/err210

Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M. C., & Centritto, M. (2014). Photosynthetic diffusional constraints affect yield in drought stressed rice cultivars during flowering. PLoS ONE, 9(10), 1�??12. https://doi.org/10.1371/journal.pone.0109054

Lee, G. A., Crawford, G. W., Liu, L., Sasaki, Y., & Chen, X. (2011). Archaeological soybean (Glycine max) in East Asia: Does size matter? PLoS ONE, 6(11), 1�??12. https://doi.org/10.1371/journal.pone.0026720

Lee, S. C., & Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell and Environment, 35(1), 53�??60. https://doi.org/10.1111/j.1365-3040.2011.02426.x

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84-87.

Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 16(7), 15251�??15270. https://doi.org/10.3390/ijms160715251

Lobato, A. K. S., Oliveira-Neto, C. F., Santos-Filho, B. G., Costa, R. C. L., Cruz, F. J. R., Neves, H. K. B., & Lopes, M. J. S. (2008). Physiological and biochemical behavior in soybean (Glycine max cv. Sambaiba) plants under water deficit. Australian Journal of Crop Science, 2(1), 25�??32.

Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179�??204. https://doi.org/10.1146/annurev.environ.041008.093740

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany, 61(13), 3509�??3517. https://doi.org/10.1093/jxb/erq185

MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2018). No Title. Brasília, DF: MAPA. Retrieved from https://www.gov.br/agricultura/pt-br

McAusland, L., Davey, P. A., Kanwal, N., Baker, N. R., & Lawson, T. (2013). A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. Journal of Experimental Botany, 64(16), 4993�??5007. https://doi.org/10.1093/jxb/ert288

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2009). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453�??467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

Missão, M. R. (2006). Soja: Origem, classificação, utilização e uma visão abrangente do mercado. Maringá Management: Revista de Ciências Empresariais, 3(1), 7�??15.

Morando, R.A.O., Silva, L.C., Carvalho, M.P.A., & Pinheiro. (2014). Déficit hídrico: efeito sobre a cultura da soja. J. Agron. Sci. 3, 114-129.

Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459�??481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

Munns, R. (2011). Plant Adaptations to Salt and Water Stress. Differences and Commonalities. Advances in Botanical Research (1st ed., Vol. 57). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-387692-8.00001-1

Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5(MAY), 1�??7. https://doi.org/10.3389/fpls.2014.00170

Nehmi, V. (2012). Por que commodities são cíclicas? Retrieved from https://verios.com.br/blog/por-que-commodities-sao-ciclicas/

O�??Donoghue, E. J., Hansen, J., & Stallings, D. (2017). USDA Agricultural Projections to 2026. Washington, DC, USA: USDA - United States Department of Agriculture.

Oliveira, F. C., & Coelho, S. T. (2016). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, 75(October), 168�??179. https://doi.org/10.1016/j.rser.2016.10.060

Olsson, A. S. B., Engström, P., & Söderman, E. (2004). The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Molecular Biology, 55(5), 663�??677. https://doi.org/10.1007/s11103-004-1581-4

Oosterhuis, D., & Wullschleger, S. D. (1988). Drought tolerance and osmotic adjustment of various crops in response to water stress - Arkansas, 12. Arkansas, USA: Arkansas Farm Research.

Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290�??295. https://doi.org/10.1016/j.pbi.2011.02.001

Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869�??882. https://doi.org/10.1093/jxb/erq340

Pintó-Marijuan, M., & Munné-Bosch, S. (2013). Ecophysiology of invasive plants: Osmotic adjustment and antioxidants. Trends in Plant Science, 18(12), 660�??666. https://doi.org/10.1016/j.tplants.2013.08.006

Rambo, L., Costa, J. A., Leonardo, J., Pires, F., Parcianello, G., & Ferreira, F. G. (2003). Rendimento de grãos da soja em função do arranjo de plantas Soybean yield response to plant arrangement. Ciência Rural, 33(3), 405�??411. Retrieved from http://www.scielo.br/pdf/cr/v33n3/a03v33n3.pdf

Ramos, M. L. G., Parsons, R., & Sprent, J. I. (2005). Differences in ureide and amino acid content of water stressed soybean inoculated with Bradyrhizoblum japonicum and B. elkanii. Pesquisa Agropecuaria Brasileira, 40(5), 453�??458. https://doi.org/10.1590/s0100-204x2005000500005

Reddy, A. S., Ali, G. S., Celesni, H., & Day, I. S. (2011). Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. The Plant Cell, 23, 2010-2032 https://doi.org/10.1105/tpc.111.084988

Reguera, M., Peleg, Z., & Blumwald, E. (2012). Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1819(2), 186�??194. https://doi.org/10.1016/j.bbagrm.2011.08.005

Reis, S. P., Lima, A. M., & Souza, C. R. B. (2012). Recent molecular advances on downstream plant responses to abiotic stress. International Journal of Molecular Sciences, 13(7), 8628�??8647. https://doi.org/10.3390/ijms13078628

Rejeb, K. B., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278�??284. https://doi.org/10.1016/j.plaphy.2014.04.007

Rio, A., Sentelhas, P. C., Farias, J. R. B., Sibaldelli, R. N. R., & Ferreira, R. C. (2016). Alternative sowing dates as a mitigation measure to reduce climate change impacts on soybean yields in southern Brazil. International Journal of Climatology, 36(11), 3664�??3672. https://doi.org/10.1002/joc.4583

Rolla, A. A. P., Carvalho, J. F. C., Fuganti, R. P., Engels, C., Rio, A., Marin, S. R. R., Oliveira, M. C. N., Beneventi, M. A., Marcelino-Guimarães, F. C., Farias, J. R. B., Neumaier, N., Nakashima, K., Yamaguchi-Shinozaki, K., & Nepomuceno, A. L. (2013). Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Research, 23(1), 75�??87. https://doi.org/10.1007/s11248-013-9723-6

Rueda, E. C., Dezar, C. A., Gonzalez, D. H., & Chan, R. L. (2005). Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant and Cell Physiology, 46(12), 1954�??1963. https://doi.org/10.1093/pcp/pci210

Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. In L. S. Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., & Tran (Ed.), Drought Stress Tolerance in Plants (pp. 1�??16). Springer.

Santos-Neto, J. T., Lucas, F. T., Fraga, D. F., Oliveira, L. F., & Pedroso-Neto, J. C. (2013). Adubação nitrogenada, com e sem inoculação de semente, na cultura da soja. Revista FAZU, 10, 8�??12.

Scalon, S. P. Q., Mussury, R. M., Euzébio, V. L. M., Kodama, F. M., & Kissmann, C. (2011). Water stress in metabolism and initial growth of mutambo (Guazuma ulmifolia Lam.) seedlings. Estresse Hídrico No Metabolismo e Crescimento Inicial de Mudas de Mutambo (Guazuma Ulmifolia Lam.), 21(4), 655�??662. https://doi.org/10.5902/198050984510

Sediyama, T., Teixeira, R. C., & Reis, M. S. (2005). Melhoramento da Soja. In A. Borém (Ed.), Melhoramento de espécies cultivadas (pp. 553�??604). Viçosa, MG: Editora UFV.

Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A. C., & Nendel, C. (2015). The soybean yield gap in Brazil - Magnitude, causes and possible solutions for sustainable production. Journal of Agricultural Science, 153(8), 1394�??1411. https://doi.org/10.1017/S0021859615000313

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1�??26. https://doi.org/10.1155/2012/217037

Shinozaki, K., & Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiology, 115(2), 327�??334. https://doi.org/10.1104/pp.115.2.327

Sinclair, T. R., & Rufty, T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 1(2), 94�??98. https://doi.org/10.1016/j.gfs.2012.07.001

Soares, M. M., Sediyama, T., & Matsuo, �?. (2020). Efficiency and responsiveness of using phosphorus and molecular diversity among soybean cultivars. Agronomy Science and Biotechnology, 6, 1�??11. https://doi.org/10.33158/asb.r108.v6.2020

Solh, M., & Ginkel, M. (2014). Drought preparedness and drought mitigation in the developing world�??s drylands. Weather and Climate Extremes, 3, 62�??66. https://doi.org/10.1016/j.wace.2014.03.003

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89�??97. https://doi.org/10.1016/j.tplants.2009.11.009

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5th ed.). Porto Alegre, RS: ArtMed.

Thao, N. P., & Tran, L. S. P. (2012). Potentials toward genetic engineering of drought-tolerant soybean. Critical Reviews in Biotechnology, 32(4), 349�??362. https://doi.org/10.3109/07388551.2011.643463

Todaka, D., Nakashima, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 5(1), 1�??9. https://doi.org/10.1186/1939-8433-5-6

Tripathi, P., Rabara, R. C., Reese, R. N., Miller, M. A., Rohila, J. S., Subramanian, S., �?� Rushton, P. J. (2016). A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics, 17(1), 1�??22. https://doi.org/10.1186/s12864-016-2420-0

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3 SEP(September), 1�??26. https://doi.org/10.3389/fphys.2012.00347

USDA - United States Department of Agriculture. (2018). No Title. Retrieved from https://www.usda.gov/

Valliyodan, B., Ye, H., Song, L., Murphy, M., Shannon, J. G., & Nguyen, H. T. (2017). Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Journal of Experimental Botany, 68(8), 1835�??1849. https://doi.org/10.1093/jxb/erw433

Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., �?� Viswanatha, K. P. (2014). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 127(2), 445�??462. https://doi.org/10.1007/s00122-013-2230-6

Yamaguchi-Shinozaki, K., Kasuga, M., Liu, Q., Nakashima, K., Sakuma, Y., Abe, H., Shiwari, Z. K., Seki, M., & Shinosaki, K. (2002). Biological mechanisms of drought stress response. Jircas Working Report, 23, 1�??8.

Yıldırım, K., & Kaya, Z. (2017). Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiology and Biochemistry, 115, 183�??199. https://doi.org/10.1016/j.plaphy.2017.03.020

Zhang, J., Liu, J., Yang, C., Du, S., & Yang, W. (2016). Photosynthetic performance of soybean plants to water deficit under high and low light intensity. South African Journal of Botany, 105, 279�??287. https://doi.org/10.1016/j.sajb.2016.04.011

Zhang, M., Lv, D., Ge, P., Bian, Y., Chen, G., Zhu, G., �?� Yan, Y. (2014). Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Journal of Proteomics, 109, 290�??308. https://doi.org/10.1016/j.jprot.2014.07.010

Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B., & Li, Z. (2007). Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology, 164(6), 709�??717. https://doi.org/10.1016/j.jplph.2006.04.008

Zhou, P., An, Y., Wang, Z., Du, H., & Huang, B. (2014). Characterization of gene expression associated with drought avoidance and tolerance traits in a perennial grass species. PLoS ONE, 9(8), 1�??12. https://doi.org/10.1371/journal.pone.0103611

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247�??273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Publicado
2021-05-27
Como Citar
Pimentel, J. R., Carvalho, I. R., Troyjack, C., Junior, G. T., Szareski, V. J., Conte, G. G., Loro, M. V., Magano, D. A., & Hutra, D. J. (2021). Water deficit in the soybean breeding. ASB Journal, 7, 1-20. https://doi.org/10.33158/ASB.r128.v7.2021
Seção
Artigos

##plugins.generic.recommendByAuthor.heading##

1 2 3 > >>