Canonical interrelationships in morphological characters, yield and nutritional components of corn
Resumo
The increase in the world population, the need to increase food production, both in quantity and quality, becomes increasingly prominent. The objective of this work was to identify the canonical correlations between yield components, morphological characters, micronutrients, bioactive compounds and amino acids in corn. The experimental design used was a randomized block containing 11 treatments arranged in three replications. The treatments consisted of 11 Top Crosses hybrid genotypes, these being made through crosses directed between a narrow genetic base tester hybrid for specific combining ability with 11 S5 inbred lines. It is inferred that groups considered yield components, secondary traits, bioactive compounds, micronutrients and amino acids are dependent. Promising characters are identified for the corn breeding for high yields, nutritional and energetic quality of corn grains. The indirect selection of grains with additions in essential amino acids can be directed to plants with superiority in height, mass and width of grains, phenols, flavonoids, soluble solids and zinc content.
Downloads
Referências
Alves, B. M., Cargnelutti-Filho, A., Burin, C., & Toebe, M. (2017). Linear associations among phenological, morphological, productive, and energetic-nutritional traits in corn. Pesquisa Agropecuária Brasileira, 52: 26-35. https://doi.org/10.1590/s0100-204x2017000100004
Alves, B. M., Cargnelutti-Filho, A., Burin, C., & Toebe, M. (2016). Correlações canônicas entre caracteres agronômicos e nutricionais proteicos e energéticos em genótipos de milho. Revista Brasileira de Milho e Sorgo, 15: 171-185. https://doi.org/10.18512/1980-6477/rbms.v15n2p171-185
Alzaben, H., Fraser, R., & Swanton, C. (2019). An Inverse Correlation between Corn Temperature and Nitrogen Stress: A Field Case Study. Agronomy Journal, 111: 3207-3219. https://doi.org/10.2134/agronj2019.04.0309
Carvalho, I. R., Souza, V. Q., Nardino, M., Follmann, D. N., Schmidt, D., & Baretta, D. (2015). Correlações canônicas entre caracteres morfológicos e componentes de produção em trigo de duplo propósito. Pesquisa Agropecuária Brasileira, 50: 690-697. https://doi.org/10.1590/S0100-204X2015000800007
Cates, A. M., & Ruark, M. D. (2017). Soil aggregate and particulate C and N under corn rotations: responses to management and correlations with yield. Plant and Soil, 415: 521-533. https://doi.org/10.1007/s11104-016-3121-9
Ceccon, G., Santos, A., & Teodoro, P. E. (2016). Relationships between primary and secondary yield components of a maize population after 13 stratified mass selection cycles. Journal of Agronomy, 15: 33-38. https://doi.org/10.3923/ja.2016.33.38
CONAB �?? Companhia Nacional de Abastecimento. Safra 2020/21 �?? N.11 �?? Décimo primeiro levantamento/agosto de 2021. Brasilia, DF: CONAB.
Crevelari, J. A., Durães, N. N. L., Santos, P. R. D., Azevedo, F. H. V., Bendia, L. C. R., Preisigke, S. D. C., & Pereira, M. G., (2019). Canonical correlation for morphoagronomic and bromatological traits in silage corn genotypes. Bragantia, 1:1-15. https://doi.org/10.1590/1678-4499.20180146
Dimkpa, C. O., Bindraban, P. S., Fugice, J., Agyin-Birikorang, S., Singh, U., & Hellums, D. (2017). Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 37: 1-5. https://doi.org/10.1007/s13593-016-0412-8
Jaradat, A, & Goldstein, W. (2018). Diversity of maize kernels from a breeding program for protein quality III: Ionome profiling. Agronomy, 8: 1-9. https://doi.org/10.3390/agronomy8020009
Lao, F., & Giusti, M. M. (2016). Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: method comparison and correlation. Food Analytical Methods, 9: 1367-1380. https://doi.org/10.1007/s12161-015-0318-0
Li, J., Zhang, H., Lu, M., & Han, L. (2019). Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments. Bioresource Technology, 293: 12-20, 2019. https://doi.org/10.1016/j.biortech.2019.122016
Liu, Z. H., & Chen, H. Z. (2016). Biomass�??water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. ACS Sustainable Chemistry & Engineering, 4: 1274-1285. https://doi.org/10.1021/acssuschemeng.5b01303
Nascimento, M. R., Santos, P. R., Coelho, F. C., Jaeggi, M. E. P., Costa, K. D. S., & Souza, M. N., (2018). Biometric analysis in maize genotypes suitable for baby corn production in organic farming system. Horticultura Brasileira, 36: 419-425. https://doi.org/10.1590/s0102-053620180322
Nobre, D. A. C., Silva, F. C., Guimarães, J. F. R., Resende, J. C. F., & Macedo, W. R. (2018). Análise de trilha e correlação canônica nos componentes do desempenho de girassol. The Journal of Engineering and Exact Sciences, 4: 364-369. https://doi.org/10.18540/jcecvl4iss3pp0364-0369
Pereira, E. M., Silva, F. M., Val, B. H. P., Pizolato-Neto, A., Mauro, A. O., Martins, C. C., & Unêda-Trevisoli, S. H. (2017). Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations. Genetics and Molecular Research, 16: 2-12. http://dx.doi.org/10.4238/gmr16029547
R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. R Foundation for Statistical Computing. Retrieved from: www.R-project.org/
Rigo, G. A., Schuch, L. O. B., Vargas, R. L., Barros, W. S., Szareski, V. J., Carvalho, I. R., & Pedo, T. (2018). Teor de micronutrientes e qualidade fisiológica de sementes de soja. Journal of Agriculture and Science, 10: 223-230. https://doi.org/10.5539/jas.v10n4p223
Song, W., Yang, R., Yang, X., Sun, S., Mentreddy, S. R., Jiang, B., Wu, T., Tian, S., Sapeya, E., Wu, C., Hou, W., Ren, G., & Han, T. (2018) Spatial differences in soybean bioactive components across China and their influence by weather factors. The Crop Journal, 6: 659-668. https://doi.org/10.1016/j.cj.2018.05.001
Tack, J. B., & Holt, M. T. (2016). The influence of weather extremes on the spatial correlation of corn yields. Climatic Change, 134: 299-309. https://doi.org/10.1007/s10584-015-1538-4
Xu, J. L., Shin, J. S., Park, S. K., Kang, S., Jeong, S. C., Moon, J. K., & Choi, Y. (2017). Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. Food research international, 100: 166-174. https://doi.org/10.1016/j.foodres.2017.08.026.
Zanatto, I. B., Sponchiado, S., Teodoro, P. E., Silva, K. J., Menezes, C. B., & Tardin, F. D., (2016). Identificação de caracteres relacionados à precocidade e produtividade em híbridos de sorgo via correlações canônicas. Revista Científica Intelletto, 1(1): 89-94. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1062978
Copyright (c) 2022 ASB Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.